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11.1 Introduction: 

Relational Algebra is a procedural language that can be used to tell the DBMS how 

to build a new relation from one or more relations in the database. While using the 
relational algebra user has to specify what is required and what are the procedure or steps 
to obtain the required output. Relational algebra is a formal and user friendly language. It 
is used as the basis for other high level Data Manipulation Languages (DMLs) for 

relational databases. It illustrates the basic operations required of any DML and serve as 
the standard of comparison for other relational databases. 

 
11.2 Relational Algebra 

The relational algebra is a theoretical language with operations that work on one or 

more relations to define another relation without changing the original relation(s). Thus, 
both the operands and the results are relations and so the output from one operation can 
become the input to another operation. This allows expressions to be nested in the 
relational algebra just as we nest arithmetic operations. This property is called closure: 

relations are closed under the algebra just as numbers are closed under arithmetic 
operations. 

There are many variations of the operations that are included in relational algebra 

Codd originally proposed Eight operations, but several others have been developed. 
The five fundamental operations in relational algebra are 
1) Selection 
2) Projection 

3) Cartesian Product 

4) Union 
5) Difference 
They perform most of the data retrieval operations, which can be expressed in 

terms of the five basic operations. 



 

 

In relational algebra each operation takes one or more relations as its operands 
and produces another relation as its result. Consider an example of mathematical algebra 
as shown below 

3+5=8 

Here 3 and 5 are operands and + is an arithmetic operator which gives result as 8. 
Similarly, in relational algebra R1+ R2 = R3. Here R1 and R2 are relations 

(operands) and + is the relational operator which gives R3 as a resultant relation. 

A) BASIC RELATIONAL ALGEBRA OPERATIONS 
Basic relational algebra operations are also called as traditional set operators , the 

various traditional set operators are : 

1) UNION 
2) INTERSECTION 
3) DIFFERENCE 

4) CARTESIAN PRODUCT 
UNION 

In mathematical set theory, the union of two sets is the set of all elements 
belonging to both sets. The set, which results from the union, must not of course contain 
duplicate elements. It is denoted by U. Thus the union of sets: 

S1 = { 1 , 2 , 3 , 4, 5 } and 
S2 = { 4 , 5 , 6, 7 , 8 } 

would be the set { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } . 
A union operation on two relational tables follows the same basic principle but is 

more complex in practice. In order to perform the Union operation, both operand relations 

must be union compatible i.e. they must have same number of columns drawn from the 
same domain (means must be of same data type} 

Suppose two tables, R and S have the following tuples at some instant in time and 

that their header parts are as shown below: 
R 

Cust_name Cust_status 

Sham Good 

Rahul Excellent 

Mohan Bad 

Sachin Excellent 

Dinesh Bad 
 

S 
Cust_name Cust_status 

Karan Bad 

Sham Good 

Sachin Excellent 

Rohan Average 

These can certainly be combined into one table containing a valid relation by the 

relational union operator ( R U S ) as follows : 
R U S 



 

Cust_name Cust_status 

Sham Good 

Rahul Excellent 

Mohan Bad 

Sachin Excellent 

Dinesh Bad 

Karan Bad 

Rohan Average 

INTERSECTION 
In mathematics an intersection of two sets produces a set, which contains all the 

elements that are common to both sets. Thus the intersection of two sets: 
S1 = { 1 , 2 , 3 , 4 , 5 } and 

S2 = { 4 , 5 , 6 , 7 , 8 } 

would be { 4 , 5 } . 
In above example both the tables are union compatible and can be intersected together. 
The intersection operation on the R and S tables defined above would be 

 

Cust_name Cust_status 

Sham Good 

Sachin Excellent 

The intersection operator is used in the similar fashion to the union operator, but 

provides an ‘and ‘ function. 

 

DIFFERENCE 
In mathematics, the difference between two sets S1 and S2 produces a set, which 

contains all the members of one set, which are not in the other. It is denoted by “ – “ sign. 
 

The order in which the difference is taken is obviously significant. Thus the difference 
between two sets: 

S1 = { 1 , 2 , 3 , 4 , 5 } 
Minus 

S2 = { 4 , 5 , 6 , 7 , 8 } 
Would be { 1 , 2 , 3 } and between 

S2 = { 4 , 5 , 6 ,7 , 8 } 
Minus 
S1 = { 1, 2 , 3 , 4 , 5 } 
would be { 6 , 7 , 8 } 
 

As for the other set operations discussed so far, the difference operation can also be 
performed on tables that are union compatible. The difference operation on the R and S (R – S) 

defined above would return. 

 



 

R – S 

Cust_name Cust_status 

Rahul Excellent 

Mohan Bad 

Dinesh Bad 

And for S – R 
Cust_name Cust_status 

Karan Bad 

Rohan Average 

 
It is used in a similar fashion to the union and intersection operators , but provides 

a qualifying “not” function . 
 
Minus is not associative 

In order to prove this mathematically consider three sets A, B, C with following 

members 
A = { 1 , 2 , 3 , 4 , 5 } 

B = { 2 , 3 } 
C  = { 1 , 4 } 
(A MINUS B ) MINUS C = { 1 , 4 , 5 } MINUS { 1 , 4 } = { 5 } 

A MINUS { B MINUS C ) = { 1 , 2 , 3 , 4 , 5 } MINUS { { 2 , 3 }MINUS { 1 , 4 }} = { 1 , 2 
, 3 , 4 , 5 } MINUS { 2 , 3 } = { 1 , 4 , 5 } 
Both the cases give different result. So minus is not an associative operator. 

 

Minus is not commutative 
It means that A MINUS B is different from B MINUS A . In order to prove it we 

again take the above values of A and B . 
A MINUS B = { 1 , 4 , 5 } 
B MINUS A is empty or null because there is not any value, which is in B but not 
in A. 

CARTESIAN PRODUCT 
In mathematics, the Cartesian product of two sets is the set of all ordered pairs of 

elements such that the first element in each pair belongs to the first set and the second 

element in each pair belongs to the second set. It is denoted by cross (x). It is for example, 
given two sets: 

S1 = { 1 , 2 , 3 } and 

S2 = { 4 , 5 , 6 } 
The Cartesian product S1 x S2 is the set : 

{ ( 1, 4 ), (1, 5 ), (1 , 6 ), ( 2, 4 ), (2, 5 ), (2 , 6 ), ( 3, 4 ), (3, 5 ), (3 , 6 ) } 

 
 
 
 



 

Consider the two tables with sample population as below 

Female 
Name Job 

Komal Clerk 

Amita Sales 

Sonia Production 

Nidhi Clerk 

Male 

Name Job 

Rohit Clerk 

Amit Sales 

Sohan Production 

Nitin Clerk 

 
 
Assume that the tables refer to male and female staff respectively. Now, in order to 

obtain all possible inter-staff marriages, the Cartesian product can be taken giving the 

Table MALE_FEMALE. 
 

Male-Female 
 

Female_Name Female_Job Male_Name Male_Job 

Komal Clerk Rohit Clerk 

Komal Clerk Amit Sales 

Komal Clerk Sohan Production 

Komal Clerk Nitin Clerk 

Amita Sales Rohit Clerk 

Amita Sales Amit Sales 

Amita Sales Sohan Production 

Amita Sales Nitin Clerk 

Sonia Sales Rohit Clerk 

Sonia Sales Amit Sales 

Sonia Sales Sohan Production 

Sonia Sales Nitin Clerk 

Nidhi Clerk Rohit Clerk 



 

Nidhi Clerk Amit Sales 

Nidhi Clerk Sohan Production 

Nidhi Clerk Nitin Clerk 

In order to preserve unique names for attributes, the original attribute names have 

had to be concantenated with the original tablenames. The new table has also been given 
an identity. 

 

B ) SPECIAL RELATIONAL OPERATIONS 
There are four special relational algebra operations which are as under 

1) SELECTION 
2) PROJECTION 
3) JOIN 
4) DIVISION 

Selection 
The selection operator yields a horizontal subset of a given relation that is that 

subset of tuples or rows of a table should be selected within the given relation for which a 
particular condition is satisfied. 

 

In mathematics a set can have any number of subsets. A set is said to be a subset 
of another if all its members are also members of the other set. Thus, in the following 

example: 

S1 = { 1 , 2 , 3 , 4 , 5 } 
S2 = { 2 , 3 , 4 } 
S2 is a subset of S1. Since the body part of a table is a set, it is possible for it to 

have subsets, that is a selection from its tuples can be used to form another relation. 
However, this would be a meaningless operation of no new information were to be 

gained from the new relation. On the other hand a subset if say an EMPLOYEE relation , 
which contained all tuples where the employee represent those employees who earn more 
than some given values of salary, would be useful. What is required is that some explicit 
restriction be placed on the sub-setting operation. 

Restriction as originally defined was defined on relations only and is achieved using 
the comparison operators such as equal to ( = ), not equal to ( != ), greater than ( > ), less 
than ( < ), greater than or equal to (>=) and less than or equal to ( <= ). 
Example : Consider the database having following tables :  

 

 The Supplier table 

SNo Sname Status City 

S1 Suneet 20 Qadian 

S2 Ankit 10 Amritsar 

S3 Amit 30 Amritsar 

S4 Raj 20 Amritsar 

 

 

 



 

The Parts table 
 

Pno Pname Color Weight City 

P1 Nut Red 12 Qadian 

P2 Bolt Red 17 Amritsar 

P3 Screw Blue 17 Jalandhar 

P4 Screw Red 14 Qadian 

The Shipment table 

SNo Pno Qty 

S1 P1 250 

S2 P2 300 

S3 P3 500 

S4 P1 250 

S5 P2 500 

S6 P2 300 
 

Here in Supplier table 

Sno - Supplier number of supplier that is unique 

Sname - Supplier name 
City - City of the supplier 
Status - Status of the city e.g A grade cities may have status 10 , B grade 

cities may have status 20 and so on . 

Examples : 
S WHERE CITY = ‘ Qadian ‘ 

 
Sno Sname Status City 

S1 Suneet 20 Qadian 

 
P WHERE WEIGHT < 15 

 
Pno Pname Color Weight City 

P1 Nut Red 12 Qadian 

P4 Screw Red 14 Qadian 

 
SP where Sno = ‘ S1’ and Pno = ‘P1’ 

 
Sno Pno Qty 

S1 P1 300 

PROJECTION 
The projection operation on a table simply forms another table by copying specified 

columns (both header and body parts) from original table eliminating any duplicated rows. 
The projection operator yields a vertical subset of a given relation – that is, the subset 



 

obtained by selecting specified attributes, in a specified left to right order, and then 

eliminating duplicate tuples within the attributes selected. It is denoted by pi (). For 

example consider the table EMPLOYEE as shown : 
Table Employee 

Personnel_number Name Age Salary 

123 Sham 23 7500 

124 Karan 43 10000 

125 Rahul 23 10000 
 

The projections of the ‘ age ‘, the ‘ age and salary ‘ and the ‘ personnel _number  
and name ‘ columns would return the three tables , say , A , B and C respectively : 

A 

 age ( employee) 
Age 

23 

43 

 

B 
 
 
 
 
 
 
 
 
 
C 

 
 
 
 
 
 
 
 
 

JOIN 

 
 age,salary (employee) 

 
 

Age Salary 

23 7500 

43 10000 

23 10000 

 
 personnel_number,name (employee) 

 
Personnel_number Name 

123 Sham 

124 Karan 

125 Rahul 

 
 
The most general form of join operation is called a theta join, where theta has the 

same meaning as ‘compares with’ as it was used in the context of the restriction 

operation. That is, it stands for any of the comparative operators equals, not equals, 
greater than and so forth. A theta join is performed on two tables, which have one or more 
columns in common which are domain compatible. 

It forms a new table which contains all the columns from both the joined tables 

whose tuples are those defined by the restriction applied. 



 

 

For example consider the tables: 
EMPLOYEE_PRODUCT 

 

Name Product 
Raja Pen 

Sparsh Pen 

Raja Pencil 

Sparsh Rubber 

PRODUCT_CUSTOMER 
 

C_Product Customer 

Pen Karan 

Pen Suneet 

Pencil Suneet 

 
The tables list employees who make products and customers who buy those 

products and can be joined over the columns ‘product’ and ‘c_product’ in both tables since 

the values in both columns are domain compatible. The result of a theta join, where the 
restriction is that the product attribute values in EMPLOYEE_PRODUCT should be equal 
to the product attribute values in PRODUCT_CUSTOMER would be: 

Table EMPLOYEE_PRODUCT_CUSTOMER 
 

Name Product C_Product Customer 

Raja Pen Pen Karan 

Raja Pen Pen Suneet 

Raja Pencil Pencil Suneet 

Sparsh Pen Pen Karan 

Sparsh Pen Pen Suneet 

Note: If both tables have same common column then one of the common column 

has to be renamed in the resultant table to preserve the uniqueness of the names in its 
header part. 

In the above example the theta operator was ‘equals’ and this , the most common 
form of theta join is referred to as an equi-join. Note that an equi-join must always result 

in a table which has pairs of columns like ‘product; and ‘c_product’ in the above example, 
which contain identical lists of attribute values. 



 

 

By far the most common form of join is a variation of the equi-join where this 
duplication of column values is eliminated by taking a projection of the table which 
includes only one of the duplicated columns. This is reffered to as a natural join. 

The natural join of the tables in the last example would give the table : 

 
Name Product Customer 

Raja Pen Karan 

Raja Pen Suneet 

Raja Pencil Suneet 

Sparsh Pen Karan 

Sparsh Pen Suneet 

It may help in understanding the different types of join if the operation is looked at 

from a different point of view. The join is actually a composite operator. The theta join is a 
Cartesian product operation on the two tables followed by a restriction operation on the 
resultant table. 

The tuples of the Cartesian product of the two tables in the earlier example would 
be : 

Name Product C_Product C_Customer 

Raja Pen Pen Karan 

Raja Pen Pen Suneet 

Raja Pen Pencil Suneet 

Sparsh Pen Pen Karan 

Sparsh Pen Pen Suneet 

Sparsh Pen Pencil Suneet 

……. …… …… ….. 

Raja Pencil Pencil Suneet 

The restriction operation on this product selects only those tuples from this 

relation, which confirm to the restriction . In the example, the restriction was that the 
‘product’ attributes should have equal values in each tuple and the result of this as shown 

below: 
 

Name Product C_Product Customer 

Raja Pen Pen Karan 

Raja Pen Pen Suneet 

Raja Pencil Pencil Suneet 

Sparsh Pen Pen Karan 

Sparsh Pen Pen Suneet 

 

Since theta equated to ‘equals’ this was an equi-join. By carrying out a further projection 

operation which eliminates one of the duplicated ‘product’ column resulting from the equi-join, 
the natural join is obtained. 



 

Thus, Join operator is combination of Cartesian product, Selection and Projection 

operator. 

The examples given so far have all been of so-called inner joins. The fact that Jones 
makes Rubbers is not recorded in any of the resultant tables from the joins, because the 
joining values must exist in both tables. If it suffices that the value exist in only one table, 
then a so-called outer join is produced. 

An outer join of the EMPLOYEE_PRODUCT and PRODUCT_ CUSTOMER tables 
exemplified above would return : 

Employee_name Product_name Customer_name 

Raja Pen Karan 

Raja Pen Suneet 

Sparsh Pen Karan 

Sparsh Pen Suneet 

Raja Pencil Suneet 

Sparsh Rubber - 

The expression A JOIN B is defined if and only if, for every unqualified attribute-name that 

is common to A and B, the underlying domain is the same for both relations. Assume that this 
condition is satisfied. Let the qualified attribute –names for A and B, in their left-to-right order, be 
A.A1,.............A.Am AND B.B (m+1) ........................ , B.B (m+n) respectively; 

Let Ci …….,Cj be the unqualified attribute name that are common to A and B and 
let Br………..Bs be the unqualified attribute- names remaining for b (with their relative 
order undisturbed) after removal of Ci, ............. Cj. 

Then A JOIN B defined to be equivalent to (A TIMES B ) [A.A1  ……….A.Am  ,  
B.Br ............ B.Bs ] 

where A.Ci = B.Ci 
and …………….. 
and A.Cj = B.Cj………. 
Apply this definition to JOIN operation on Emp and Dept tables with following 

attributes: 
EMP(empno,ename,job,sal,deptno) 
DEPT(deptno,dname,loc) 
EMP JOIN DEPT = EMP TIMES DEPT 

[emp.empno,emp.ename,emp.job,emp.sal,emp.deptno,dept.dname, dept.loc] where 

EMP.deptno = DEPT. deptno 

So, w can say that JOIN is a combination of Product, Selection and Projection 
operators. JOIN is an associative operator, which means: 

(A JOIN B ) JOIN C = A JOIN ( B JOIN C ) . 
JOIN is also commutative . 

A JOIN B = B JOIN A 

 
DIVISION 

The division operator divides a dividend relation A of degree (means number of 
columns in a relation ) m+n by a divisor relation B of degree n and produces a resultant 

relation of degree m . 

 



 

Sno 

S1 

S2 

Sno 

S1 

S4 

P1 

Pno 

S1 

Sno 

Relation A 
 

Sno Pno 

S1 P1 

S1 P2 

S1 P3 

S1 P4 

S1 P5 

S1 P6 

S2 P1 

S2 P2 

S3 P2 

S4 P2 

S4 P4 

S4 P5 

Relation B 
CASE 1 CASE 2 

 

CASE 3 

Pno 

P1 

P2 

P3 

P4 

P5 

P6 

 

A DIVIDED BY B 

CASE 1 CASE 2 Case 3 

In this example dividend relation A has two attributes of Sno,Pno (of degree 2) and 
division relation B has only one attribute Pno (of degree 1 ). Then A divided by B gives a 
resultant relation of degree 1. It means it has only one attribute of Sno. 

A SNO * PNO 

--- = ------------------ = SNO 
B   PNO 
The resultant relation has those tuples that are common values of those attributes, 

which appears in the resultant attribute sno . 
For example ,in CASE 2, 

Pno 

P2 

P4 



 

P2 has Snos  S1,S2,S3,S4 
P4 has Snos  S1,S4 
S1, S4 are the common supplier who supply both P2 and P4. So the resultant 

relation has tuples S1 and S4. 
In CASE 3 

There is only one supplier S1 who supply all the parts from P1 to P6. 
 

11.3 Summary 
Relational Algebra is a procedural language which specifies the operations to be performed 

on the existing relations to derive result relations. Relational Algebric operations can divided into 
basic and special relational operators. Relational Calculus is a non procedural language which is 
an alternate way of formulating queries. It is based on Predicate Calculus which means to 
formulate set of predicates to which the answer to a query must conform instead of specifying a 
series of subsequent singular operations together with objects involved in these operations. 

 
11.4 Questionnaires 

Q1. What is relational Algebra and what are its uses? 
Q2. Explain the following operations with examples: 

1.       Union 2.       Intersection 3. Differenc 
4. Cartesian Product 5. Division 
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12.1 Introduction 

The concept of functional dependency is the basis for Normalization. The 
functional dependencies are the consequence of the interrelationships among 
attributes of a relation (table) represented by some link or association. It must be taken 
care that the database design must be very good and that needs careful decomposition 

of the relations into further relations. In the following sections we will study how to 
decompose the relations so that it leads to good database design. And if we do not do 
decomposition with care it will result in bad database design which includes repetition 
of data like problems. 

 
12.2 Functional Dependencies 

Functional dependencies play a key role in differentiating good database designs 
from bad database design. A functional dependency is a type of constraint that is a 

generalization of the notion of key. 

 
12.2.1 Basic Concepts 

Functional dependencies are constraints on the set of legal relations. They allow 

us to express facts about the enterprise that we are modeling with our database. 
Functional Dependency is a many-to-one relationship from one set of attributes 

to another within a given relation. 

We define the notion of a super-key as follows. Let R be a relation schema. A 
subset K of R is a super-key of R if, in any legal relation r(R), for all pairs t1 and t2 of 
tuples in r such that t1 ≠ t2, then t1[K] ≠ t2[K]. That is no two tuples in any legal relation 
in r (R) may have the same value on attribute set K. 

The notion of functional dependency generalizes the notion of super-key. 

Consider a relation schema R, and let A  R and þ  R. The functional dependency 
A → þ 

holds on schema R if, in any legal relation r(R) for all pairs of tuples t1 and t2 in r such 
that t1[A] = t2 [A], it is also the case that t1[þ] = t2[þ]. 

Using the functional-dependency notation, we say that K is a super-key of R if 
K→ R. That is K is a super-key if, whenever t1[K] = t2 [K] it is also the case that t1[R] =  
t2 [R] (that is t1 = t2). 

Functional dependencies allow us to express constraints that we cannot express 

with super-keys. Consider the schema 



 

Loan-info-schema = (loan-number, branch-name, customer-name, amount) which 

is simplification of the lending-schema that we saw earlier. The set of functional 
dependencies that we expect to hold on this relation schema is 

loan-number → amount 
loan-number → branch-name 

We would not, however, expect the functional dependency 

loan-number → customer-name 

to hold, since in general a given loan can be made to more than one customer (for 
example, to both members of a husband – wife pair) 

We shall use functional dependencies in two ways: 
1 To test relations to see whether they are legal under a given set of 

functional dependencies. If a relation r is legal under a set F of functional 
dependencies, we say that r satisfies F. 

2 To specify constraint on the set of legal relations. We shall thus concern 

ourselves with only those relations that satisfy a given set of functional 
dependencies. If we wish to constrain ourselves to relations on schema R 

that satisfy a set F of functional dependencies, we say that F holds on R. 
Let us consider the relation r of figure below: 

 

A B C D 

a1 b1 c1 d1 

a1 b2 c1 d2 

a2 b2 c2 d2 

a2 b3 c2 d3 

a3 b3 c2 d4 

Sample relation r 

to see which functional dependencies are satisfied. Observe that A→C is satisfied. 
There are two tuples that have an A value of a1. These have the same C value – namely 
c1. Similarly, the two tuples with an A value of a2 have the same C value, c2. There are 
not other pairs of distinct tuples that have the same a value. The functional 
dependency C—A is not satisfied however. To see that it is not, consider the tuples t1 = 
(a2, b3,c2, d3) and t2 = (a3, b3, c2, d4) these two tuples have the same C values c2, but 
they have different A values a2 and a3, respectively. Thus we have found a pair of  
tuples t1 and t2 such that t1 [C] = t2 [C] but t1[A]≠t2[A]. 

Many other functional dependencies are satisfied by r, including, for example, 
the functional dependency AB→D. Note that we use AB as shorthand for {A, B}, to 
conform with standard practice. Observe that there is no pair of distinct tuples t1 and 
t2 such that t1[AB] = t2[AB]. Therefore, if t1[AB] = t2[AB], it must be that t1 = t2 and thus 
t1[D] = t2[D]. So satisfies AB→D. 
Some functional dependencies are said to be trivial because they are satisfied by all relations. 
For  example,  A→A  is  satisfied  by  all  relations  involving  attribute  A.  Reading  the  definition  of 
functional dependency literally, we see that, for all tuples t1 and t2 such that t1[A] = t2[A] it is the 
case  that  t1[A]  =  t2[A].  Similarly,  AB  → A  is  satisfied  by  all  relations  involving  attribute  A.  In 
general a functional dependency of the form A → þ is trivial if þ ≤ A. 

To distinguish between the concepts of a relation satisfying a dependency and a 
dependency holding on a schema, we return to the banking example. If we consider the 

customer relation (on customer-schema) in Figure below, we see that customer-street → 
customer-city is satisfied. However, we believe that in the real world, two cities can have 



 

streets with the same name. 

 

Customer-name Customer-street Customer-city 
Jones Main Harrison 

Smith North Rye 

Hayes Main Harrison 

Curry North Rye 

Lindsay Park Pittsfield 

Turner Putnam Stamford 

Williams Nassau Princeton 

Adams Spring Pittsfield 

Johnson Alma Palo Alto 

Glenn Sand Hill Woodside 

Brooks Senator Brooklyn 

Green Walnut Stamford 

 
The customer relation 

Thus, it is possible, at some time to have an instance of the customer relation in which 

customer-street→ customer-city is not satisfied. So we would not include customer-street→ 
customer-city in the set of functional dependencies that hold on Customer-schema. 

In the loan relation (on loan-schema) of figure below, we see that the dependency loan- 

number → amount is satisfied. In contrast to the case of customer-city and customer-street in 
customer-schema, we do believe that the real world enterprise that we are modeling requires 
each loan to have only one amount. Therefore we want to require that loan-number→ amount 

be satisfied by the loan relation at all times. In other words, we require that the constraint loan 

number→ amount hold on loan-schema. 
The loan relation: 

Loan-number Branch-name Amount 
L-17 Downtown 1000 

L-23 Redwood 2000 

L-15 Perryridge 1500 

L-14 Downtown 1500 

L-93 Mianus 500 

L-11 Round Hill 900 

L-29 Pownal 1200 

L-16 North Town 1300 

L-18 Downtown 2000 

L-25 Perryridge 2500 

L-10 Brighton 2200 

In the branch relation of Figure below, we see that branch-name→ assets is 

satisfied, as is assets→ branch-name. We want to require that branch-name→ assets 

hold on branch-schema. However we do not wish to require that assets→ branch-name 

hold since it is possible to have several branches that have the same asset value. 

 



 

Branch-name Branch- 
city 

Assets 

Downtown Brooklyn 9000000 

Redwood Palo Alto 2100000 

Perryridge Horseneck 1700000 

Mianus Horseneck 400000 

Round Hill Horseneck 8000000 

Pownal Bennington 300000 

North Town Rye 3700000 

Brighton Brooklyn 7100000 

The branch relation 

In what follows, we assume that, when we design a relational database, we first 
list those functional dependencies that must always hold. In the banking example our 

list of dependencies includes the following: 

 On branch-schema: 

Branch-name→ branch-city 

Branch-name→ assets 

 On customer-schema: 

customer-name→ customer-city 

customer-name→ customer-street 

 On Loan-schema: 

Loan-number→ amount 

Loan-number→ branch-name 

 On Borrower-schema: 

No functional dependencies 

 On Account-schema: 
Account-number→ branch-name 

Account-number→ balance 

 On depositor-schema: 

No functional dependencies 

 
12.2.2 Closure of a set of Functional dependencies 

It is not sufficient to consider the given set of functional dependencies. Rather, 
we need to consider all functional dependencies that hold. We shall see that given a set 

F of functional dependencies, we can prove that certain other functional dependencies 
hold. We say that such functional dependencies are “logically implied” by F. 

More formally given a relational schema R, a functional dependency f on R is 
logically implied by a set of functional dependencies F of R if every relation instance 

r(R) that satisfied F also satisfies f. 
Suppose we are given a relation schema R = (A, B, C, G, H, I,) and the set of 

functional dependencies 



 

A→ B  
A → C  
CG→ H  
CG→ I 
B→ H 

 
The functional dependency 

 
A→ H 

 
is logically implied. That is, we can show that, whenever our given set of functional 

dependencies holds on a relation, A → H must also hold on the relation. Suppose that t1 

and t2 are tuples such that t1[A] = t2 [A] 

since we are given that A → B, it follows from the definition of functional dependency 

that 
t1[B] = t2 [B] 

then, since we are given that B → H, it follows from the definition of functional 
dependency that 

t1[H] = t2 [H] 
Therefore it shows that whenever t1 and t2 are tuples such that t1 [A] = t2[A] it 

must be that t1[H] = t2[H]. But that is exactly the definition of A → H. 
Let f be a set of functional dependencies logically. The closure of F, denoted by F+, is 

the set of all functional dependencies implied by F. Given F, we can compute f directly from 
the formal definition of functional dependency. If F were large, this process would be lengthy 
and difficult. Such a computation of F+ requires arguments of the type just used to show 
that A → H is in the closure of our example set of dependencies. 

Axioms or rules of inference provide a simpler technique for reasoning about functional 
dependencies.  In  the  rules  that  follow,  we  use  Greek  letters  for  sets  of  attributes,  and 

uppercase Roman letters from the beginning of the alphabet for individual attributes. We use 

AÞ to denote A U þ. 

We can use the following three rules to find implied functional dependencies. By 
applying these rules repeatedly, we can find all of F+, given F. This collection of rules is 
called Armstrong’s axioms in honor of the person who first proposed it. 

 Reflexivity rule. If A is a set of attributes and þ  A, then 

A → þ holds. 

 Augmentation rule. If A → þ holds and y is a set of attributes, then 

yA → yþ holds. 

 Transitivity rule. If A → þ holds and þ→ y holds, then A → y holds. 
Armstrong’s axioms are sound, because they do not generate any incorrect 

functional dependencies. They are complete, because for a given set F of functional 
dependencies, they allow us to generate all F+. 

Although Armstrong’s axioms are complete, it is tiresome to use them directly 

for the computation of F+. To simplify matters further, we list additional rules. It is 
possible to use Armstrong’s axioms to prove that these rules are correct. 

 Union rule. If A → þ holds and A → y holds, then A → þy holds. 

 Decomposition rule. If A → þy holds, then A → þ holds and A → y holds. 

 Pseudotransitivity rule. If A → þ holds and yþ→ 6 holds, then Ay→ 6 

holds. 



 

F+ = F 
repeat 

for each functional dependency f in F+ 

apply reflexivity and augmentation rules on f 
add the resulting functional dependencies to F+ 

for each pair of functional dependencies f1 and f2 in F+ 

if f1 and f2 can be combined using transitivity 
add the resulting functional dependency to F+ 

until F+ does not change any further 

Let us apply our rules to the example of schema R = (A, B, C, G, H, I) and the  

set F of functional dependencies {A→ B, A→ C, CG→ H, CG→ I, B→ H}. We list several 
members of F+ here. 

 A→ H. Since A→ B and B→ H hold, we apply the transitivity rule. 

Observe that it was much easier to use Armstrong’s axioms to show that 
A→ H holds than it was to argue directly from the definitions, as we did 
earlier in this section. 

 CG→ HI. Since CG→ H and CG→ I, the union rule implies that CG→ HI. 

 AG→ I. Since A→ C and CG→ I, the pseudotransitivity rule implies that 

AG→ I holds. 
Another way of finding that AG→ I holds is as follows. We use the augmentation 

rule on A→ C to infer AG→ CG. Applying the transitivity rule to this dependency and 
CG→ I, we infer AG→ I. 

Figure below shows a procedure that demonstrates formally how to use 
Armstrong’s axioms to compute F+. In this procedure, when a functional dependency is 
added to F+, it may be already present, and in that case there is no change to F+. We 
will also see an alternative way of computing F in next section. 

 

The left-hand and right-hand sides of a functional dependency are both subsets 

of R. Since a set of size n has 2n subsets, there are a total of 2 x 2 n = 2 n+1 possible 
functional dependencies, where n is the number of attributes in R. Each iteration of 
the repeat loop of the procedure, except the last iteration, adds at least one functional 

dependency to F+. Thus, the procedure is guaranteed to terminate. 
 
12.2.3 Closure of Attribute Sets 

To test whether a set A is a super-key, we must devise an algorithm for computing 

the set of attributes functionally determined by A. One way of doing this is to compute F+, 
take  all  functional  dependencies  with  A as  the  left-hand  side,  and  take  the  union  of  the 

right-hand sides of all such dependencies. However doing so can be expensive, since F+  can 

be large. 

An efficient algorithm for computing the set of attributes functionally determined by 

A is useful not only for testing whether A is a super-key, but also for several other tasks, as 

we will see later in thus section. 



 

result := A 
while (changes to result) do 

for each functional dependency þ→ y in F do 
begin 

if þ ≤ result then result := result U y 
end 

Let   A  be   a   set   of   attributes.   We   call   the   set   of   all   attributes   functionally 

determined by A under a set F of functional dependencies the closure of  A under F; we 

denote it by A+. Figure below shows an algorithm written in pseudocode to compute A+. 
The  input is  a set F of functional dependencies  and the  set  A of attributes. The  output 

is stored in the variable result. 
 

To illustrate how the algorithm works, we shall use it to compute (AG)+ with the 

functional dependencies defined in preceding section. We start with result = AG. The 
first time that we execute the while loop to test functional dependency, we find that 

 A→ B cause us to include B in result. To see fact, we observe that A→ B is in F, 

A ≤ result (which is AG), so result := result U B. 

 A→ C causes result to become ABCG. 

 CG→ H causes result to become ABCGH. 

 CG→ I causes result to become ABCGHI. 
The second time that we execute the while loop, no new attributes are added to 

result, and the algorithm terminates. 
Let us see why the algorithm of Figure above is correct. The step is correct, since A→ A 

always holds (by the reflexivity rule). We claim that for any subset þ of result, A→þ. Since we 

start the while loop with A→ result being true, we can add y to result only if þ ≤ result and þ→ 
y. But then result → þ by the reflexivity rule, so A→ þ by transitivity. Another application of 
transitivity shows that A→ y (using A→ þ and þ→ y). The union rule implies that A→ result U y, 

so  functionally  determines  any  new  result  generated  in  the  while  loop.  Thus  any  attribute 

returned by the algorithm is in A+. 
It is easy to see that the algorithm finds all A+. If there is an attribute in A+  that is not 

yet in result, then there must be a functional dependency þ→ y for which þ ≤ result, and at 

least one attribute in y is  not in result. 
It turns out that, in the worst case, this algorithm may take an amount of time 

quadratic in the size of F. 

There are several uses of the attribute closure algorithm: 

 To test if A is a super-key, we compute A+, and check if A+ contains all 
attributes of R. 

 We can check if a functional dependency A→ þ holds (or, in other words, 

is in F+) by checking if þ  A+. That is we compute A+ by using attribute 

closure and then check if it contains þ. This test is particularly 
useful, as we will see later in this chapter. 

 It gives us an alternative way to compute F+: for each y  R, we find the 

closure  y+, and  for each S    y+, we  output a functional dependency      
y → S. 
 

 
 



 

12.3 Decomposition 
The bad design of database suggests that we should decompose a relation schema that has 

many attributes into several schemas with fewer attributes. Careless decomposition, however may 

lead to another form of bad design. 
Consider an alternative design in which we decompose Lending-schema into the 

following two-schemas: 

Branch-customer-schema = (branch-name, branch-city, assets, customer-name) 
Customer-loan-schema = (customer-name, loan-number, amount) 
Using the lending relation described in “Problems arising out of bad database 

design” topic (Figure W) that we will discuss next, we construct our new relations 
branch-customer (Branch-customer) and customer-loan (customer-loan-schema): 

branch–customer = Π branch-name, branch-city, assets, customer-name (lending) 
customer-loan = Π customer-name, loan-number, amount (lending) 
Figure X and Y respectively show the resulting branch-customer and customer- 

name relations. 

 

Branch-name Branch-city Assets Customer-name 
Downtown Brooklyn 9000000 Jones 

Redwood Palo Alto 2100000 Smith 

Perryridge Horseneck 1700000 Hayes 

Downtown Brooklyn 9000000 Jackson 

Mianus Horseneck 400000 Jones 

Round Hill Horseneck 8000000 Turner 

Pownal Bennington 300000 Williams 

North Town Rye 3700000 Hayes 

Downtown Brooklyn 9000000 Johnson 

Perryridge Horseneck 1700000 Glenn 

Brighton Brooklyn 7100000 Brooks 

Figure X: The relation branch-customer 

 
Customer-name Loan-number Amount 
Jones L-17 1000 

Smith L-23 2000 

Hayes L-15 1500 

Jackson L-14 1500 

Jones L-93 500 

Turner L-11 900 

Williams L-29 1200 

Hayes L-16 1300 

Johnson L-18 2000 

Glenn L-25 2500 

Brooks L-10 2200 

Figure Y: The relation customer-loan 

 

Of course, there are cases in which we need to reconstruct the loan relation. For 
example, suppose that we wish to find all branches that have loans with amounts less 
than $1000. No relation in our alternative database contains these data. We need to 



 

reconstruct the lending relation. It appears that we can do so by writing 

branch-customer  customer-loan 
 

Figure Z below shows the result of computing branch-customer  customer-loan. 

Branch- 
name 

Branch-city Assets Customer- 
name 

Loan- 
number 

Amount 

Downtown Brooklyn 9000000 Jones L-17 1000 

Downtown Brooklyn 9000000 Jones L-93 500 

Redwood Palo Alto 2100000 Smith L-23 2000 

Perryridge Horseneck 1700000 Hayes L-15 1500 

Perryridge Horseneck 1700000 Hayes L-16 1300 

Downtown Brooklyn 9000000 Jackson L-14 1500 

Mianus Horseneck 400000 Jones L-17 1000 

Mianus Horseneck 400000 Jones L-93 500 

Round Hill Horseneck 8000000 Turner L-11 900 

Pownal Bennington 300000 Williams L-29 1200 

North Town Rye 3700000 Hayes L-15 1500 

North Town Rye 3700000 Hayes L-16 1300 

Downtown Brooklyn 9000000 Johnson L-18 2000 

Perryridge Horseneck 1700000 Glenn L-25 2500 

Brighton Brooklyn 7100000 Brooks L-10 2200 

When we compare this relation and the lending relation with which we started 
(Figure W), we notice a difference: Although every tuple that appears in the lending 

relation appears in branch-customer  customer-loan, there are tuples in branch- 

customer  customer-loan that are not in lending. In our example, branch-customer 

 customer-loan has the following additional tuples: 
(Downtown, Brooklyn, 9000000, Jones, L-93, 5000 

(Perryridge, Horseneck, 1700000, Hayes L-16, 1300) 
(Mianus, Horseneck, 400000 Jones, L-17, 1000) 
(North Town, Rye 3700000, Hayes L-15, 1500) 
 

Consider the query “Find all bank branches that have made a loan in an 

amount less than $1000. If we look back at Figure W, we see that the only branches 
with loan amounts less than $1000 are Mianus and Round Hill. However, when we 
apply the expression 

Π branch-name (σ amount <1000  (branch-customer  customer-loan) 
we obtain three branch names Mianus, Round Hill and Downtown. 

A closer examination of this example shows why. If a customer happens to have 

several loans from different branches, we cannot tell which loan belongs to which 
branch. Thus when we join branch-customer and customer-loan, we obtain not only the 
tuples we had originally in lending, but also several additional tuples. Although we 

have more tuples in branch-customer  customer-loan, we actually have less information. 
We are no longer able, in general, to represent in the database information about which 

customers are borrowers from which branch. Because of this loss of information, we 
call the decomposition of lending-schema into Branch-customer-schema and customer- 

loam-schema a lossy decomposition, or a lossy-join decomposition. A decomposition 
that is not a lossy join decomposition is a lossless join decomposition. It should be 



 

clear from our example that a lossy-join decomposition is, in general a bad database 

design. 
Why is the decomposition lossy? There is one attribute in common between 

branch customer-schema and customer-loan-schema: 
Branch-customer-schema ∩ customer-loan-schema = {customer-name} 
The only way that we can represent a relationship between, for example, loan number 

and branch-name is through customer-name. This representation is not adequate because a 
customer may have several loans, yet these loans are not necessarily obtained from the same 

branch. 

Let us consider another alternative design, in which we decompose Lending- 

schema into the following two schemas: 
Branch-schema = (branch-name, branch-city, assets) 
Loan-info-schema = (branch-name, customer-name, loan-number, amount) 

There is one attribute in common between these two schemas: 
Branch-loan-schema ∩ customer-loan-schema = {branch-name} 
Thus the only way that we can represent a relationship between for example 

customer-name and asset is through branch-name. The difference between this example 

and the preceding one is that the assets of a branch are the same, regardless of the 
customer to which we are referring, whereas the lending branch associated with a 
certain loan amount does depend on the customer to which we are referring. For a 
given branch-name, there is exactly one assets value and exactly one branch-city; 

whereas a similar statement cannot be made for customer-name. That is the functional 
dependency 

Branch-name→ {assets, branch-city} 

holds, but customer-name does not functionally determine loan-number 

The notion of lossless joins is central to much of relational database design. 
Therefore, we restate the preceding examples more concisely and more formally. Let r 
be a relational schema. A set of relational schema {R1, R2, … , Rn} is a decomposition of 
R if 

R = R1 U R2 U … U Rn 

That is {R1, R2, … , Rn} is a decomposition of R if, for i = 1,2,……n, each Ri is a subset 
of R, and every attribute in R appears in at least one Ri. 

Let r be a relation on schema r, and let ri = ΠRi (r) for i = 1,2….n . That is {r1, r2, 
… , rn} is the database that results from decomposition of r into {R1, R2,……Rn} it is 
always the case that 

r ≤ r1 ∞ r2 ∞ … ∞ rn 

To see that this assertion is true consider a tuple t in relation r,. When we compute 
the relations r1, r2,…rn the tuple t gives rise to one tuple ti in each ri, i = 1,2...n .These n 
tuples combine to regenerate t when we compute r1 ∞ r2 ∞ … ∞ rn. The details are left for you 
to complete as an exercise. Therefore every tuple in r appears in r1 ∞ r2 ∞ … ∞ rn. 

In general r ≠ r1 ∞ r2 ∞ … ∞ rn. As an illustration, consider our earlier example  
in which 

 n = 2 

 R = Lending –schema 

 R1 = Branch-customer-schema 
 R2 = customer-loan-schema 
 r = the relation shown in Figure W. 

 r1 = the relation shown in Figure X. 
 r2 = the relation shown in Figure Y. 



 

 r1 ∞ r2 = the relation shown in Figure Z. 
Note that the relations in Figure W and Z are not the same. 
To have a lossless-join decomposition, we need to impose constraints on the set 

of possible relations. We found that the decomposition of Lending-schema into Branch- 

schema and Loan-info-schema is lossless because the functional dependency. 

branch-name → branch-city assets 

holds on branch-schema We say that a relation is legal if it satisfies all rules, or 

constraints that we impose on our database. 
Let C represent a set of constraints on the database and let R be a relation 

schema. A decomposition {R1, R2…….Rn} of R is a lossless join decomposition if for all 
relations r on schema R that are legal under C, 

r = ΠR1 (r) ∞ ΠR2 (r) ∞ … ∞ ΠRn (r) 
12.3.1 Desirable Properties of Decomposition 

We can use a given set of functional dependencies in designing a relational 

database in which most of the undesirable properties discussed above do not occur. 
When we design such systems, it may become necessary to decompose a relation into 
several relations. 

Lending-schema = (branch-name, branch-city, assets, customer-name, loan- 

number, amount) 
The set F of functional dependencies that we require to hold Lending schema 

are 
branch-name → {branch-city, assets} 

loan-number → {amount, branch-name} 

Lending-schema is an example of a bad database design. Assume that we 
decompose it to the following three relations: 

Branch-schema = (branch-name, branch-city, assets) 

Loan-schema = (loan-number, branch-name, amount) 
Borrower-schema = (customer-name, loan-number) 

We claim that this decomposition has several desirable properties, which we 

discuss next. 
Lossless-join decomposition 

When we decompose a relation into a number of smaller relations, it is crucial 

that the decomposition be lossless. We must first present a criterion for determining 
whether decomposition is lossy. 

Let R be a relation schema, and let F be a set of functional dependencies on R. 
Let R1 and R2 form a decomposition of R. This decomposition is a lossless-join 
decomposition of R if at least one of the following functional dependencies is in F+. 

R1 ∩ R2 → R1 
 R1 ∩ R2 → R2 

In other words if R1 ∩ R2 forms a super-key of either R1 or R2 the decomposition 
of r is a lossless-join decomposition. We can use attribute closure to efficiently test for 
super-keys as we have seen earlier. 

We now demonstrate that our decomposition of Lending-schema is a lossless- 

join decomposing Lending-schema into two schemas: 

Branch-schemas = (branch-name, branch-city, assets) 
Loan-info-schema = (branch-name, customer-name, loan-number, amount) 

Since branch-name → {branch-name, assets} the augmentation rule for 

functional dependencies implies that 



 

Branch-name→ {branch-name, branch-city, assets} 

Since Branch-schema ∩ Loan-info-schema = {branch-name}, it follows that our 
initial decomposition is a lossless-join decomposition 

Next we decompose loan-info-schema into 
Loan-schema = (loan-number, branch-name, amount) 
Borrower-schema = (customer-name, loan-number) 

This step results in a lossless-join decomposition since loan-number is a 

common attribute and loan-number→ amount branch-name. 

For the general case of decomposition of a relation into multiple parts at once 

the test for lossless join decomposition is more complicated. 
While the test for binary decomposition is clearly a sufficient condition for 

lossless join, it is a necessary condition only if all constraints are functional 
dependencies. 

 
12.3.2 Dependency Preservation 

There is another goal in relational database design: dependency preservation. 
When an update is made to the database, the system should be able to check that the 
update will not create an illegal relation-that is, one that does not satisfy all the given 
functional dependencies. If we are to check updates efficiently, we should design 

relational-database schemas that allow update validation without the computation of 
joins. 

To decide whether joins must be computed to check an update, we need to  
determine what functional dependencies can be tested by  checking each relation 
individually. Let F be a set of functional dependencies on a schema R and let R1, R2…..Rn be 
a decomposition of R. The restriction of F to Ri is the set Fi of all functional dependencies in 
F+ that include only attributes of Ri. Since all functional dependencies in a restriction involve 
satisfaction of only one relation schema, it is possible to test such a dependency for 
satisfaction by checking only one relation. 

Note that the definition of restriction uses all dependencies in F+, not just those in 
F. For instance, suppose F= {A→B, B→C} and we have a decomposition into AC and AB. 

The restriction of F to AC is then A→C, since A→C is in F+ even though it is not in F. 

The set of restrictions F1, F2….Fn is the set of dependencies that can be checked 
efficiently. We now must ask whether testing only the restrictions is sufficient. Let F’ = 
F1 U F2 U …..U Fn. F’ is a set of functional dependencies on schema R but in general F 
≠ F. However even if F’ ≠ F may be that F’+ = F+. If the latter is true, then every 
dependency in F is logically implied by F’ and if we verify that F’ is satisfied we have 
verified that F is satisfied. We say that a decomposition having the property F’+ = F+ is a 

dependency preserving decomposition. 
Figure V shows an algorithm for testing dependency preservation. The input is a set 

D = {R1, R2….Rn} of decomposed relation schemas and a set F of functional dependencies. 
This algorithm is expensive since it requires computation of F; we will describe another 
algorithm that is more efficient after giving an example testing for dependency preservation. 



 

compute F+; 
for each schema Ri in D do 
begin 

Fi = the restriction of F+ to Ri 
end 
F’:=Φ 

for each restriction Fi do 
begin 

F’ = F’ U Fi 
end 

compute F’+; 

if (F’+ = F+) then return (true) 
else return (false); 

 
Figure V: Testing for dependency preservation 

 
We can now show that our decomposition of Lending-schema is dependency 

preserving. Instead of applying the algorithm of Figure V, we consider an easier 

alternative; We consider each member of the set F of functional dependencies that we 
require to hold on Lending-schema and show that each one can be tested in at least 
one relation in the decomposition. 

 We can test the functional dependency: branch-name → {branch-city 

assets} using Branch-schema = (branch-name, branch-city, assets). 

 We can test the functional dependency : loan-number → {amount branch- 

name} using Loan-schema = (branch-name, loan-number, amount) 

If each member of F can be tested on one of the relations of the decomposition, 
then the decomposition is dependency preserving. However there are cases where even 
though the decomposition is dependency preserving, there is a dependency in F that 
cannot be tested in any one relation in the decomposition. The alternative test can 

therefore be used as a sufficient condition that is checked. If it fails we cannot 
conclude that the decomposition is not dependency preserving instead we will have to 
apply the general test. 

We  now  give  a  more  efficient  test  for  dependency  preservation,  which  avoids 

computing  F+.  The  idea  is  to  each  functional  dependency  A  →  þ   in  F  by  using  a 

modified  form  of  attribute  closure  to  see  if  it  is  preserved  by  the  decomposition.  We 

apply the following procedure to each → in F. 
result = A 
while (changes to result) do 

for each Ri in the decomposition 

t = (result ∩ Ri)+ ∩ Ri 
result = result U t 

The  attribute  closure  is  with  respect  to  the  functional  dependencies  in  F.  If 
result  contains  all  attribute  in  þ then  the  functional  dependency  A → þ is  preserved. 

The  decompositions  is  dependency  preserving  if  and  only  if  all  the  dependencies  in  F 

are preserved. 
Note that instead of precomputing the restriction of F on Ri and using it for 

computing the attribute closure of result, we use attribute closure on (result ∩ Ri) with 



 

respect to F, and then intersect it with Ri, to get an equivalent result. This procedure 
takes polynomial time, instead of the exponential time required to compute F+. 

 
12.3.3 Repetition of Information 

The decomposition of Lending-schema does not suffer from the problem of 
repetition of information that we will discuss in section about Bad Database Design. In 

Lending-schema, it was necessary to repeat the city and assets of a branch for each 
loan. The decomposition separates branch and loan data into distinct relations, 
thereby eliminating this redundancy. Similarly observe that, if a single loan is made to 
several customers, we must repeat the amount of the loan once for each customer (as 

well as the city and assets of the branch) in Lending-schema. In the decomposition, the 
relation on schema Borrower-schema contains the loan-number, customer-name 
relationship and not other schema does. Therefore we have one tuple for each  

customer for a loan in only the relation on Borrower-schema. In the other relational 
involving loan-number (those on schemas Loan-schema and Borrower-schema) only one 
tuple per loan needs to appear. 

 
12.4 Problems arising out of bad database design (Pitfalls in Relational-Database 
design) 

Let us look at what can go wrong in a bad database design. Among the 
undesirable properties that a bad design may have are: 

 Repetition of information 

 Inability to represent certain information. 
We shall discuss these problems with the help of a modified database design for 

our banking example: Suppose the information concerning loans is kept in one single 
relation, lending which is defined over the relation schema 

Lending-schema = (branch-name, branch-city, assets, customer- 

name, loan-number, amount) 

Figure below shows an instance of the relation lending (Lending-schema). A tuple t in 
the lending relation has the following intuitive meaning: 

 t[assets] is the asset figure for the branch named t[branch-name] 

 t[branch-city] is the city which the branch named t[branch-name] is 
located 

 t[loan-number] is the number assigned to a loan made by the branch 
named t[branch-name] to the customer named t[customer-name] 

 t[amount] is the amount of the loan whose number is t[loan-number] 

 

Suppose that we wish to add a new loan to our database. Say that the loan is made 

by the Perryridge branch to Adams in the amount of $1500. Let the loan-number be L-31. In 
our design, we need a tuple with values on all the attributes of Lending schema. Thus we 
must repeat the asset and city data for the Perryridge branch, and must add the tuple 

(Perryridge, Horseneck, 1700000, Adams, L-31, 1500) 
to the lending relation. In general, the asset and city data for a branch must appear 

once for each loan made by that branch. 

 



 

Branch- 
name 

Branch- 
city 

Assets Customer- 
name 

Loan- 
number 

Amount 

Downtown Brooklyn 9000000 Jones L-17 1000 

Redwood Palo Alto 2100000 Smith L-23 2000 

Perryridge Horseneck 1700000 Hayes L-15 1500 

Downtown Brooklyn 9000000 Jackson L-14 1500 

Mianus Horseneck 400000 Jones L-93 500 

Round Hill Horseneck 8000000 Turner L-11 900 

Pownal Bennington 300000 Williams L-29 1200 

North Town Rye 3700000 Hayes L-16 1300 

Downtown Brooklyn 9000000 Johnson L-18 2000 

Perryridge Horseneck 1700000 Glenn L-25 2500 

Brighton Brooklyn 7100000 Brooks L-10 2200 

Figure W: Sample lending relation 

The repetition of information in our alternative design is undesirable. Repeating 
information wastes space. Furthermore it complicates updating the database. Suppose 
for example, that the assets of the Perryridge branch change from 1700000 to 

1900000. Under our original design, one tuple of the branch relation need to be 
changed. Under our alternative design many tuples of the lending relation need to be 
changed. Thus updates are more costly under the alternative design than under the 
original design. When we perform the update in the alternative design database, we 

must ensure that every tuple pertaining to the Perryridge branch is updated, or else 
our database will show two different asset values for the Perryridge branch. 

That observation is central to understanding why the alternative design is bad. 

We know that a bank branch has a unique value of assets, so given a branch name we 
can uniquely identify the assets value. On the other hand, we know that a branch may 
make many loans, so given a branch name, we cannot uniquely determine a loan 
number. In other words, we say that the functional dependency. 

branch-name → assets 

Holds on Lending-schema, but we do not expect the functional dependency 

branch-name → loan- number to hold. The fact that a branch has particular value of 
assets and the fact that a branch makes a loan are independent, and, as we have seen, 
these facts are best represented in separate relations. We shall see that we can use 

functional dependencies to specify formally when a database design is good. 
Another problem with the Lending-schema design is that we cannot represent 

directly the information concerning a branch 9branch-name, branch-city, assets) 
unless there exists at least one loan at the branch. This is because tuples in the 

lending relation require value for loan-number, amount and customer-name. 
One solution to this problem is to introduce null values, as we did to handle updates 

through views. However, Null values are difficult to handle. If we are not willing to deal with Null 
values, then we can create the branch information only when the first loan application at that 

branch is made. Worse, we would have to delete this information when all the loans have been 
paid. Clearly, this situation is undesirable, since, under our original database design, the branch 
information would be available regardless of whether or not loans are currently maintained in 
the branch, and without restoring to null values. 

 



 

12.5 Summary 
Functional dependencies play a key role in differentiating good database designs 

from bad database design. An attribute Y of a relation R is said to be functionally 
dependent upon attribute X of relation R if and only if for each value of X in R has 
associated with it only one of Y in R at any given time. It is represented by as X-> Y, 
where X attributes is known as determinant and Y is known as determined. Using the 

concept of Functional Dependencies we decompose the relations. The bad design of 
database suggests that we should decompose a relation schema that has many 
attributes into several schemas with fewer attributes. Careless decomposition, however 
may lead to another form of bad design. When we decompose a relation into a number 

of smaller relations, it is crucial that the decomposition be lossless. 

 

12.6 Questionnaires: 
1. What do you mean by Functional Dependency? What is its importance in 

Database design? Explain with example. 

2. Why we need decomposition? What is its need? What are the steps 
involved in decomposing the relations. 

3. What are the various problems that arise due to bad database design? 
 
 
 



 

PAPER : DBMS  

LESSON NO. : 13  
 

 

NORMALIZATION 
 
 Introduction 

Normalization 
First Normal Form 
Second Normal Form 
Third Normal Form 
Boyce-Codd Normal Form 
Multi-valued Dependency 
Fourth Normal Form 
Join Dependencies and Fifth Normal Form 
Database Design Process 

 Summary 
 Questionnaires 

 
13.1 Introduction 

In this lesson, we will discuss the normalization process and define the first 

three normal forms for relation schemas. The definitions of second and third normal 
form presented here are based on the functional dependencies and primary keys of a 
relation schema. More general definitions of these normal forms, which take into 
account all candidate keys of a relation rather than just the primary key, are also 

presented. We also define Boyce-Codd Normal Form (BCNF), and further normal forms 
that are based on other types of data dependencies. We first informally discuss what 
normal forms are and what the motivation behind their development was. We then 
present first normal form (1NF). Then we present definitions of second normal form 

(2NF) and third normal form (3NF) respectively that are based on primary keys. Then 
we will proceed for multivalued dependency and further the fourth and fifth Normal 
Forms that are based on MVDs. In the last we will discuss about the database design 
process. 

 
13.2 Normalization 

The normalization process as first proposed by Codd (1972) takes a relation 

schema through a series of tests to “certify” whether or not, it belongs to a certain 
normal form. Initially Codd proposed three normal forms, which he called first, second 

and third normal form. A stronger definition of 3NF was proposed later by Boyce and 
Codd and is known as Boyce-Codd normal form. All these normal forms are based on 
the functional dependencies among the attributes of a relation. Later fourth normal 
form (4NF) and a fifth normal forms (5NF) were proposed, based on the concepts of 

multi-valued dependencies and join dependencies, respectively. Normalization of data 
can be looked on as a process during which unsatisfactory relation schemas are 
decomposed by breaking up their attributes into smaller relation schemas that possess 
desirable properties. One objective of the original normalization process forms provides 

database designers with: 

 A formal framework for analyzing relation schemas based on their keys and on the 

functional dependencies among their attributes. 

 A series of tests that can be carried out on individual relation schemas so 



 

that the relational database can be normalized to any degree. When a 

test fails, the relation violating that test must be decomposed into 
relations that individually meet the normalization tests. 

 To free relations from undesirable insertion, deletion and update 

anomalies. 
Normal forms, when considered in isolation from other factors, do not guarantee a 

good database design. It is generally not sufficient to check separately that each relation 

schema in the database is, say, in BCNF or 3NF. Rather, the process of normalization 
through decomposition must also confirm the existence of additional properties that the 
relation schemas, taken together, should possess. Two of these properties are: 

 The loss less join or no additive join property, which guarantees that the 
spurious tuple problem does not occur 

 The dependency preservation property, which ensures that all functional 
dependencies are represented in some of the individual resulting 

relations. 
In this section we concentrate on an intuitive discussion of the normalization 

process. Notice that the normal forms mentioned in this section are not only the possible 
ones. Additional normal forms may be defined to meet other desirable criteria, based on 

additional types of constraints. The normal forms up to BCNF are defined by considering 
only the functional dependency and key constraints, whereas 4NF considers an additional 
constraint called a multi-valued dependency and 5NF considers an additional constraint 
called a join dependency. The practical utility of normal forms becomes questionable when 

the constraints on which they are based are hard to understand or to detect by the database 
designers and users who must discover these constraints. 

Another point worth noting is that the database designers need not normalize to 

the highest possible normal form. Relations may be left in lower normal forms for 
performance reasons. 

Before proceedings further, we recall the definitions of keys of a relation 
schema. A super key of a relation schema R = {A1, A2,…………, An} is a set  of 

attributes S  (sub set of) R with the property that no two tuples t1 and t2 in any legal 
relation state r of R will have t1[S] = t2[S]. A key K is a super-key with the additional 
property that removal of any attribute from K will cause K not to be a super-key any 
more. The difference between a key and super key is that a key has to be “minimal” 
that is, if we have a key K = {A1, A2……., Ak} then K – A is not a key for 1<=i<=k. In 
figure given below {SSN} is a key for EMPLOYEE, whereas {SSN}, {SSN, ENAME}, {SSN, 
ENAME, BDATE} etc. are all super keys. 

 

 

 

EMPLOYEE 
f.k. 

ENAME SSN BDATE ADDRESS DNUMBER 

p.k. 

If relation schema has more than one “minimal” key, each is called a candidate 

key. One of the candidates keys is arbitrarily designated to be the primary key, In 
figure above {SSN} is the only candidates key for EMPLOYEE, so it is also the primary 

key. 



 

An attribute of relation schema R is called a prime attribute of R if it is a 

member of any key of R. An attribute is called nonprime if it is not a prime attribute- 
that is, if it is not a member of any candidate key. 

We now present the first three normal forms: 1NF, 2NF and 3NF. These were 

proposed by Codd (1972) as a sequence to ultimately achieve the desirable state of 3NF 
relations by progressing through the intermediate states of 1NF and 2NF if needed. 

 
13.3 First Normal Form (1 NF) 

First normal form is now considered to be part of the formal definition of a 

relation; historically, it was defined to disallow multi-valued attributes, composite 
attributes, and their combinations. It states that the domains of attributes must 
include only atomic (simple, indivisible) values and that the value of any 
attribute in a tuple must be a single value from the domain of that attribute. 
Hence, 1NF disallows having a set of values, a tuple of values or a combination of both 
as an attribute value for a single tuple. In other words, 1NF disallows “relations within 
relations” or “relations as attributes of tuples”. The only attribute values permitted by 

1NF are single atomic (or indivisible) values. 

Consider the DEPARTMENT relation schema shown in following figure, whose 

primary key is DNUMBER, and suppose that we extend it by including the 
DLOCATIONS attribute shown within dotted lines. We assume that each department 
can have a number of locations. The DEPARTMENT schema and example extension are 
shown in Figures that follow. As we can see, this is not in 1NF because DLOCATIONS 

is not an atomic attribute, as illustrated by the first tuple in Figure (b). There are two 
ways we can look at the DLOCATIONS attribute: 

 The domain of DLOCATIONS contains atomic values, but some tuple can 
have a set of these values. In this case, DNUMBER*→ DLOCATIONS. 

 The domain of DLOCATIONS contains sets of values and hence in monatomic. 

In this case, DNUMBER→DLOCATIONS, because each set is considered a 
single member of the attribute domain (In this case we can consider the 

domain of DLOCATIONS to e the power set of single locations; that is, the 
domain is made up of all possible subsets of the set of single locations). 

 
a) 

DEPARTMENT 

 
 
  

DLOCATIONS DMGRSSN DNUMBER DNAME 



 

DNAME DNUMBER DMGRSSN DLOCATIONS DNUMBER 

 
b) 

DEPARATMENT 

DNAME DNUMBER DMGRSSN DLOCATIONS 

 
Research 5 333445555 {Bellaire, Sugarland, 

Houston} 
Administration 4 987654321 {Stafford} 

Headquarters 1 888665555 {Houston} 
 

c) DEPARTMENT 

DNAME DNUMBER DMGRSSN DLOCATIONS 

 
Research 5 333445555 Bellaire 

Research 5 333445555 Sugarland 

Research 5 333445555 Houston 

Administration 4 987654321 {Stafford} 

Headquarters 1 888665555 {Houston} 

Figure showing Normalization into 1NF. (a) A relation schema that is not in 1NF. (b) 

Example relation instance. (c) 1NF relation with redundancy. 

In either case, the DEPARTMENT relation of figures above is not in 1NF; in fact, 
it does not even qualify as a relation, we break up its attributes into the two relations 

DEPARTMENT and DEPT_LOCATIONS shown in Figure here: 
 

DEPARTMENT DEPT_LOCATIONS 
 

 

The idea is to remove the attribute DLOCATIONS that violates 1NF and place it 
in a separate relation DEPT_LOCATIONS along with the primary key DNUMBER of 

DEPARTMENT. The primary key of this relation is the combination {DNUMBER, 
DLOCATION}, as shown in Figure above. A distinct tuple in DEPT_LOCATIONS exists 
for each location of a department. The DLOCATIONS attribute is removed from the 
DEPARTMENT relation of Figure showing the normalization into 1NF, decomposing the 

non-1NF relation into two 1NF relations DEPARTMENT and DEPT_DLOCATIONS of 
Figure above. 

Notice that a second way to normalize into 1NF is to have a tuple in the original 
DEPARTMENT relation for each location of a DEPARTMENT, as shown in Figure (c). In this 

case, the  primary key becomes the combination {DNUMBER, DLOCATION}, and 
redundancy exists in the tuples. The first solution is superior because it does not suffer 
from this redundancy problem. In fact, if we choose the second solution, it will be 
decomposed further during subsequent normalization steps into the first solution. 

The first normal form also disallows composite attribute that are themselves 
multi-valued. These are called nested relations because each tuple can have a relation 
within it. Figure A below shows how an EMP_PROJ relation can be shown if nesting is 
allowed. Each tuple represents an employee entity, and a relation PROJS (PNUMBER, 

HOURS} within each tuple represents the employee’s projects and the hours per week 
that the employee works on each project. The schema of the EMP_PROJ relation can be 



 

ENAME SSN 

represented as follows: 

EMP_PROJ (SSN, ENAME, {PROJS (PNUMBER, HOURS)}) 
The set braces {} identify the attribute PROJS as multi-valued, and we list the 

component attribute that form PROJS between parentheses (). Interestingly, recent research 
into the relational model is attempting to allow and formalize nested relations, which were 
disallowed early on by 1NF. 

Notice that SSN is the primary key of the EMP_PROJ relation in Figure A(a) and 
(b), while PNUMBER is the partial primary key of each nested relation; that is, within 
each tuple, the nested relation attributes into a new relation and propagate the primary 

key into; the primary key of the new relation will combine the partial key with the 
primary key of the original relation. Decomposition and primary key propagation yield 
the schemas shown in Figure A(c). 

Here is the figure A: 

a) 
EMP_PROJ 

 

SSN ENAME 
PROJS 

PNUMBER HOURS 
 

b) EMP_PROJ 
 

SSN ENAME PNUMBER HOURS 
 

123456789 Smith, John B. 1 32.5 
  2 7.5 

666884444 Narayan, Ramesh K. 3 40.0 
453453453 English, Joyce A. 1 20.0 

  2 20.5 
333445555 Wong, Franklin T. 2 10.5 

  3 10.5 
  10 10.5 
  20 10.5 

 
c) EMP_PROJ1 

 

EMP_PROJ2 
 

SSN PNUMBER HOURS 

 
This procedure can be applied recursively to a relation with multi-valued level 

nesting to unnest the relation into a set of 1NF relations. This is useful in converting 
hierarchical schemas into 1NF relations. As we shall see in the coming topics, 
restricting relations to 1NF leads to the problems associated with multi-valued 

dependencies and 4NF. 
  



 

13.4 Second Normal Form (2NF)
Second Normal form is based on the concept of full functional dependency. A 

functional dependency X→Y is a full functional dependency if removal of any attribute 
a from X means that the dependency does not hold any more; that is, for any attribute 

A ε X, 

(X-{A}) *→ Y. A functional dependency
A ε X can be removed from X
– {A})→Y. In figure below, {SSN, PNUMBER} 
SSN →HOURS nor PNUMBER

PNUMBER}→ENAME is partial because SSN

 

 

EMP_PROJ 

SSN PNUMBER 

fd1   

 
fd2 

fd3 

A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R. 
above is in 1NF but is not in 2NF. The nonprime attribute ENAME violates 2NF 
because of fd2, as do the nonprime attribute PNAME and PLOCATION because of fd3. 
The functional dependencies fd2 and fd3 make ENAME, PNAME and PLOCATION 

partially dependent on the primary key {SSN, PNUMBER} of EMP_PROJ thus violating 
2NF. 

If a relation schema is not in 2NF it can be further normalized into a number of 
2NF relations in which nonprime attributes are associated only with the part of the 

primary key on which they are fully functionally dependent. The functional 
dependencies fd1, fd2 and fd3 in Figure above hence lead to the decomposition of 
EMP_PROJ into the three relation schemas EP1, EP2 and EP3 shown in Figure 
of which is in 2NF. We can see that the relations Ep1, Ep2 and EP3 are devoid of the 

update anomalies from which EMP_PROJ of Figure above suffers.

 

 

(2NF) 
form is based on the concept of full functional dependency. A 

Y is a full functional dependency if removal of any attribute 
a from X means that the dependency does not hold any more; that is, for any attribute 

dependency X→Y is a partial dependency 
X and the dependency still holds; that is for

Y. In figure below, {SSN, PNUMBER} → HOURS is a full dependency (neither 
PNUMBER→HOURS holds). However, the dependency {SSN 

ENAME is partial because SSN→ENAME holds. 

 HOURS ENAME PNAME PLOCATION

 

A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R. The EMP_PROJ relation in figure 
above is in 1NF but is not in 2NF. The nonprime attribute ENAME violates 2NF 
because of fd2, as do the nonprime attribute PNAME and PLOCATION because of fd3. 

endencies fd2 and fd3 make ENAME, PNAME and PLOCATION 

partially dependent on the primary key {SSN, PNUMBER} of EMP_PROJ thus violating 

If a relation schema is not in 2NF it can be further normalized into a number of 
2NF relations in which nonprime attributes are associated only with the part of the 

primary key on which they are fully functionally dependent. The functional 
, fd2 and fd3 in Figure above hence lead to the decomposition of 

EMP_PROJ into the three relation schemas EP1, EP2 and EP3 shown in Figure 
of which is in 2NF. We can see that the relations Ep1, Ep2 and EP3 are devoid of the 

which EMP_PROJ of Figure above suffers. 

form is based on the concept of full functional dependency. A 
Y is a full functional dependency if removal of any attribute 

a from X means that the dependency does not hold any more; that is, for any attribute 

 if some attribute 
for some A ε X, (X 

HOURS is a full dependency (neither 
HOURS holds). However, the dependency {SSN 

PLOCATION 

A relation schema R is in 2NF if every nonprime attribute A in R is fully 
The EMP_PROJ relation in figure 

above is in 1NF but is not in 2NF. The nonprime attribute ENAME violates 2NF 
because of fd2, as do the nonprime attribute PNAME and PLOCATION because of fd3. 

endencies fd2 and fd3 make ENAME, PNAME and PLOCATION 

partially dependent on the primary key {SSN, PNUMBER} of EMP_PROJ thus violating 

If a relation schema is not in 2NF it can be further normalized into a number of 
2NF relations in which nonprime attributes are associated only with the part of the 

primary key on which they are fully functionally dependent. The functional 
, fd2 and fd3 in Figure above hence lead to the decomposition of 

EMP_PROJ into the three relation schemas EP1, EP2 and EP3 shown in Figure B each 
of which is in 2NF. We can see that the relations Ep1, Ep2 and EP3 are devoid of the 



 

BDATE SSN ENAME 

Figure B: 

a) 

 
 
 
EMP_PROJ 

 

SSN PNUMBER 

fd1   

 

fd2 

fd3 

 

 

EP1 

 

EP3 
 
 
 

 

13.5 Third Normal Form (3NF)
Third Normal form is based on the concept of transitive dependency. A 

functional dependency X →Y in a relation schema R is a transitive dependency if there 
is a set of attributes Z that is not a subset of any key of R, and both X
hold. The dependency SSN→

of Figure here: 

EMP_DEPT 
 

 
 

DNUMBER is not a subset of the key of EMP_DEPT. Intuitively; we can see that 
dependency of DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER 

is not a key of EMP_DEPT. 
According to Codd’s original definition, a relation schema R is in 3NF if it 

is in 2NF and no nonprime attribute of R is transitively dependent on the

SSN PNUMBER HOURS
 
fd1 

PNUMBER PNAME
 

fd3 

DNUMBER ADDRESS  

 HOURS ENAME PNAME PLOCATION

 

2NF Normalization 

 EP2 

  

(3NF) 
Third Normal form is based on the concept of transitive dependency. A 

Y in a relation schema R is a transitive dependency if there 
is a set of attributes Z that is not a subset of any key of R, and both X

→DMGRSSN is transitive through DNUMBER in EMP_DEPT 

DNUMBER is not a subset of the key of EMP_DEPT. Intuitively; we can see that 
DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER 

According to Codd’s original definition, a relation schema R is in 3NF if it 
is in 2NF and no nonprime attribute of R is transitively dependent on the

SSN ENAME 
 
fd2 

HOURS 

PNAME PLOCATION 

DMGRSSNDNAME 

PLOCATION 

Third Normal form is based on the concept of transitive dependency. A 

Y in a relation schema R is a transitive dependency if there 
is a set of attributes Z that is not a subset of any key of R, and both X→Z and Z→Y 

DMGRSSN is transitive through DNUMBER in EMP_DEPT 

DNUMBER is not a subset of the key of EMP_DEPT. Intuitively; we can see that 
DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER 

According to Codd’s original definition, a relation schema R is in 3NF if it 
is in 2NF and no nonprime attribute of R is transitively dependent on the 

DMGRSSN 



 

BDATE SSN ENAME 

BDATESSN ENAME 

DNAMEDNUMBER 

primary key. The relation schema EMP_DEPT in Figure above is in 2NF since no 

partial dependencies on a key exist. However EMP_DEPT is not in 3NF because of 
transitive dependency of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can 
normalize EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and 

Ed2 shown in Figure below: 

EMP_DEPT 
 

 
 
 

 
 

ED1 

 

ED2 

Intuitively, we see that Ed1 and Ed2 represent independent entity facts about 
employees and departments. A NATURAL JOIN operation on ED1 and ED2 will recover 

the original relation EMP_DEPT without generating spurious

 

13.6 Boyce-Codd Normal Form
Boyce-Codd normal form is stricter than 3NF, meaning that every relation in 

BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF, intuitively, 
we can see the need for a stronger normal form
relation schema of Figure below with its four functional dependencies fd1 through fd4.

 
LOTS 

PROPERTY_ID# COUNTY_NAME

fd1 

 
fd2 

 

 

 

Suppose that we have thousands of lots in the relation but the lots are from 

only two counties; Marion County and Liberty County. Suppose also that lot size in 

DNUMBER ADDRESS  

DNUMBER ADDRESS BDATE 

DMGRSSN DNAME 

. The relation schema EMP_DEPT in Figure above is in 2NF since no 

partial dependencies on a key exist. However EMP_DEPT is not in 3NF because of 
transitive dependency of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can 

by decomposing it into the two 3NF relation schemas ED1 and 

 

3NF Normalization 

Intuitively, we see that Ed1 and Ed2 represent independent entity facts about 
employees and departments. A NATURAL JOIN operation on ED1 and ED2 will recover 

the original relation EMP_DEPT without generating spurious tuples. 

Codd Normal Form (BCNF) 
Codd normal form is stricter than 3NF, meaning that every relation in 

BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF, intuitively, 
we can see the need for a stronger normal form than 3NF by going back to the LOTS 
relation schema of Figure below with its four functional dependencies fd1 through fd4.

COUNTY_NAME LOT# AREA PRICE 

    

fd3 

fd4 

Suppose that we have thousands of lots in the relation but the lots are from 

only two counties; Marion County and Liberty County. Suppose also that lot size in 

DMGRSSNDNAME 

. The relation schema EMP_DEPT in Figure above is in 2NF since no 

partial dependencies on a key exist. However EMP_DEPT is not in 3NF because of the 
transitive dependency of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can 

by decomposing it into the two 3NF relation schemas ED1 and 

Intuitively, we see that Ed1 and Ed2 represent independent entity facts about 
employees and departments. A NATURAL JOIN operation on ED1 and ED2 will recover 

Codd normal form is stricter than 3NF, meaning that every relation in 

BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF, intuitively, 
than 3NF by going back to the LOTS 

relation schema of Figure below with its four functional dependencies fd1 through fd4. 

TAX_RATE 

 

Suppose that we have thousands of lots in the relation but the lots are from 

only two counties; Marion County and Liberty County. Suppose also that lot size in 

DMGRSSN 



 

C B A 

PROPERTY_ID# AREA 

Marion County are only 0.5, 0.6, 0.7, 0.8, l 0.9, and 2.0 acres. In such a situation we 

should have the additional functional dependency fd5; AREA 
add this to the other dependencies, the relation schema LOTS1A still is in 3NF because 
COUNTY_NAME is a prime attribute.

The area versus county relationship represented by fd5 can be r
16 tuples in a separate R (AREA, COUNTY_NAME) since there are only 16 possible 

AREA values. This representation reduces the redundancy of repeating the same 
information in the thousands of LOTS1A tuples. BCNF is a stranger normal form that 
would disallow LOTS1A and suggest the need for decomposing it.

This definition of Boyce

relation schema R is in BCNF if whenever a functional dependency X 
in R, then X is a super-key of R. 
condition (b) of 3NF, which allows A to be prime if X is not a super
BCNF. 

In our example, fd5 violates BCNF in LOTS1A because AREA is not a super

of LOTS1A. Note that fd5 satisfies 3NF LOT
attribute (Condition (b)), but this condition does not exist in the definition of BCNF. We 
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in 

Figure C(a). 
In practice most relation schema that are 

dependency X  A exists in a relation schema R with X not a super

attribute will R be in 3NF but not in BCNF. The relation schema R shown in Figure 
illustrates the general case of such a relation.

It is best to have relation schemas in BCNF, if that is not possible, 3NF will do. 

However, 2NF and 1 NF are not considered good relation schema designs. These 
normal forms were developed historically as stepping stones to 3NF and

Here is Figure C: 

(a) LOTS1A 

PROPERTY_ID# COUNTY_NAME

fd1 

 

fd2 
 

 
 

 
LOTS1AX 

 
 

R 
 
 
 

fd1 

 
fd2 

 LOT# COUNTY_NAMEAREA 

Marion County are only 0.5, 0.6, 0.7, 0.8, l 0.9, and 2.0 acres. In such a situation we 

ave the additional functional dependency fd5; AREA → COUNTY_NAME. If we 
add this to the other dependencies, the relation schema LOTS1A still is in 3NF because 

attribute. 
The area versus county relationship represented by fd5 can be r

16 tuples in a separate R (AREA, COUNTY_NAME) since there are only 16 possible 

AREA values. This representation reduces the redundancy of repeating the same 
information in the thousands of LOTS1A tuples. BCNF is a stranger normal form that 

uld disallow LOTS1A and suggest the need for decomposing it. 
This definition of Boyce-Codd differs slightly from the definition of 3NF. 

relation schema R is in BCNF if whenever a functional dependency X 
key of R. The only difference between BCNF and 3NF is that 

condition (b) of 3NF, which allows A to be prime if X is not a super-key, is absent from 

In our example, fd5 violates BCNF in LOTS1A because AREA is not a super

of LOTS1A. Note that fd5 satisfies 3NF LOTS1A because COUNTY_NAME is a prime 
attribute (Condition (b)), but this condition does not exist in the definition of BCNF. We 
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in 

In practice most relation schema that are in 3NF are also in BCNF. Only if a 

A exists in a relation schema R with X not a super-key and A a prime 

attribute will R be in 3NF but not in BCNF. The relation schema R shown in Figure 
illustrates the general case of such a relation. 

t is best to have relation schemas in BCNF, if that is not possible, 3NF will do. 

However, 2NF and 1 NF are not considered good relation schema designs. These 
normal forms were developed historically as stepping stones to 3NF and

COUNTY_NAME LOT# AREA 

   

fd3 

BCNF Normalization 

 LOTS1AY 

COUNTY_NAME 

Marion County are only 0.5, 0.6, 0.7, 0.8, l 0.9, and 2.0 acres. In such a situation we 

COUNTY_NAME. If we 
add this to the other dependencies, the relation schema LOTS1A still is in 3NF because 

The area versus county relationship represented by fd5 can be represented by 
16 tuples in a separate R (AREA, COUNTY_NAME) since there are only 16 possible 

AREA values. This representation reduces the redundancy of repeating the same 
information in the thousands of LOTS1A tuples. BCNF is a stranger normal form that 

Codd differs slightly from the definition of 3NF. A 
relation schema R is in BCNF if whenever a functional dependency X → A holds  

ly difference between BCNF and 3NF is that 

key, is absent from 

In our example, fd5 violates BCNF in LOTS1A because AREA is not a super-key 

S1A because COUNTY_NAME is a prime 
attribute (Condition (b)), but this condition does not exist in the definition of BCNF. We 
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in 

in 3NF are also in BCNF. Only if a 

key and A a prime 

attribute will R be in 3NF but not in BCNF. The relation schema R shown in Figure C(b) 

t is best to have relation schemas in BCNF, if that is not possible, 3NF will do. 

However, 2NF and 1 NF are not considered good relation schema designs. These 
normal forms were developed historically as stepping stones to 3NF and BCNF. 



 

13.7 Multi-valued Dependencies 
Multi-valued dependencies are a consequence of first normal form, which 

disallowed an attribute in a tuple to have a set of values. If we have two or more multi- 
valued independent attributes in the same relation schema, we get into a problem of 
having to repeat every value of one the attribute with every value of the other attribute 
to keep the relation instance consistent. This constraint is specified by a multi-valued 

dependency. 
For example, consider the relation EMP shown in Figure D (a). A tuple in this 

EMP relation represents the fact that an employee whose name is ENAME works on the 
project whose name is PNAME and has a dependent whose name is DNAME. An 

employee may work on several projects and may have several dependents, and the 
employees project and dependents are not directly related to one another. To keep the 
tuples in the relation consistent, we must keep a tuple to represent every combination 
of an employee’s dependent and an employee’s project. This constraint is specified as a 

multi-valued dependency on the EMP relation. Informally, whenever two independent 
1: N relationships A: B and A: C are mixed on the same relation, an MVD may arise. 

Figure D: 
 

(a) EMP 
 

ENAME PNAME DNAME 

 

Smith X John 

Smith Y Anna 

Smith X Anna 
Smith Y John 

 
 

(b) 
 
 
 
 
 
 
 

(c) 

EMP_PROJECTS 
 

ENAME PNAME 

 

Smith X 

Smith Y 

 
 

SUPPLY 

EMP_DEPENDENTS 
 

ENAME DNAME 

 

Smith John 

Smith Anna 

 

SNAME PARTNAME PROJNAME 

 

Smith Bolt ProjX 

Smith Nut ProjY 

Adamsky Bolt ProjY 

Walton Nut ProjZ 

Adamsky Nail ProjX 

Adamsky Bolt ProjX 
Smith Bolt ProjY 



 

PARTNAME SNAME PROJNAME SNAME PROJNAME PARTNAME 

 

(d) R1 R2 R3 

 

  
Adamsky ProjY 

Walton ProjZ 

Adamsky ProjX 

 

Formal Definition of Multi-valued Dependency 

Bolt ProjY 

Nut ProjZ 

Nail ProjX 

Formally a multi-valued dependency (MVD) X→→Y specified on relation schema 
R where X and Y are both subsets of R, specifies the following constraint on any 
relation r of R. If two tuples t1 and t2 exist in r such that t1[X] = t2[X] then two tuples t3 
and t4 should also exist in r with the following properties: 

 t3 [X] = t4[X]=t1[X]=t2[X] 
 t3[4]=t1 [Y] and t4[Y]=t2[Y] 
 t3[R-(XY)] = t2[R-(XY)] and t4[R-(XY)] = t1[R-(XY)]. 
Whenever X→→Y holds, we say that X multi-determines Y. Because of the 

symmetry in the definition, whenever X→→Y holds in R, so does X→→ (R-(XY)). Recall 
that (R-XY) is the same as R-(X U Y) = Z. Hence X→→Y implies X→→Z and therefore it 
is sometimes written as X→→Y/Z. 

The formal definition specifies that given a particular value of X, the set of 
values of Y determined by this value of X is completely determined by X alone 
and does not depend on the values of the remaining attributes Z of the relation 
schema R. Hence whenever two tuples exist that have distinct values of Y but the 
same value of X these values of Y must be related with every distinct value of Z that 
occurs with that same value of X. This informally corresponds to Y being a multi- 

valued attribute of the entities represented by tuple in R. 
In Figure D (a) the MVDs ENAME→→PNAME and ENAME→→DNAME or 

ENAME→→PNAME/DNAME hold in the EMP relation. The employee with ENAME 
Smith works on project with PNAME ‘X’ and ‘Y’ and has two dependents with DNAME 

John and ‘Anna’. If we stored only the first two tuples in EMP (< Smith’, ‘X’, ‘John’>  
and <Smith’, ‘Y’ ‘Anna’> and <Smith’, ‘Y’, ‘John’>) to show that {‘X’, ‘Y’} and {John’, 
‘Anna} are associated only ‘Smith’ that is there is no association between PNAME and 
DNAME. 

An MVD X→→Y in R is called a trivial MVD if (a) Y is a subset of X or (b) X U 
Y=R, for example the relation EMP_PROJECTS in Figure D (b) has the trivial MVD 
ENAME→→PNAME. An MVD that satisfies neither (a) nor (b) is called a nontrivial 

Bolt ProjX 

Nut ProjY 
Smith ProjX 

Smith ProjY 
Smith Bolt 

Smith Nut 

Adamsky Bolt 

Walton Nut 

Adamsky Nail 



 

MVD. A trivial MVD will hold in any relation instance r of R, it is called trivial because 

it does not specify any constraint on R. 
If we have a nontrivial MVD in relation, we may have to repeat values 

redundantly in the tuples. In the EMP relation of Figure the values ‘X’ and ‘Y’ of  
PNAME are repeated with each value of DNAME (or by symmetry, the values ‘John’ and 
‘Anna’ of DNAME are repeated with each value of PNAME). This redundancy is clearly 

undesirable However; the EMP schema is in BCNF because no functional dependencies 
hold in EMP. Therefore, we need to define a fourth normal form that is stronger than 
BCNF and disallows relation sch4emas such as EMP. We first discuss some of the 
properties of MVDs and consider how they are related to functional dependencies. 

Inference Rules for Functional and Multi-valued Dependencies 
As with functional dependencies (FDs), we can develop inference rules for 

MVDs. It is better through, to develop a unified framework that includes both FDs and 
MVDs so that both types of constraints can be considered together. The following 
inference rules IR1 through IR8 form a sound and complete set for inferring functional 
and multi-valued dependencies from a given set of dependencies. Assume that all 
attributes are included in a “universal” relation schema R= {A1, A2 ….An} and that X, Y, 
Z and W are subsets of R. 

(IR1) (Reflexive rule for FDs0: if X ≥ Y, then X → Y. 
(IR2) (Augmentation rule for FDs): {X →Y) ╞ XZ→YZ 
(IR3) (Transitive rule for FDs): {X→Y, Y→Z} ╞ X→Z. 
(IR4) (Complementation rule for MVDs): {X→→Y) ╞ {X→→ (R – (X U Y))}. 
(IR5) (Augmentation rule for MVDs): If X →→Y and W≥Z then WX→→YZ 
(IR6) (Transitive rule for MVDs): {X→→Y, Y→→Z} ╞ X →→ (Z-Y) 
(IR7) (Replication rule FD to MVD)): {X→Y} ╞ X→→Y 
(IR8) (Coalescence rule for FDs and MVDs): If X→→Y and there exists W with 

the properties that (a) W ∩ Y is empty, (b) W→Z and (c) Y ≥ Z then X→Z. 

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through Ir6 are 
inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs. In particular 

IR7 says that a functional dependency is a special case of a multi-valued dependency; 
that is, every FD is also an MVD. An FD X→Y is an MVD X→→Y with the additional 
restriction that at most one value of Y is associated with each value of X. Given a set F 
of functional and multi-valued dependencies specified on R = {A1, A2,…….An), we can 
use IR1 through IR8 to infer the (complete) set of all dependencies (functional or multi- 
valued) F+ that will hold in every relation instance r of R that satisfies F. We again call 
F+ closure of F. 

 
13.8 Fourth Normal Form 

We now present the definition of 4NF which is violated when a relation has 
undesirable multi-valued dependencies, and hence can be used to identify and 
decompose such relations. A relation schema R is in 4NF respect to a set of 
dependencies F if for every nontrivial multi-valued dependency X→→Y in F+, X is 
a super-key for R. 

The EMP relation of Figure D (a) is not 4NF because in the nontrivial MVDs 

ENAME→→PNAME and ENAME →→ DNAME, ENAME is not a super-key of EMP. We 

decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS shown in Figure D(b). 
Both EMP PROJECTS and EMP_DEPENDENTS are in 4NF, because 

ENAME→→PNAME is a trivial MVD in EMP PROJECTS and ENAME→→DNAME is a 



 

trivial MVD in EMP_DEPENDENTS. In fact no nontrivial MVDS hold in either 

EMP_PROJECTS or EMP_DEPENDENTS. No FDs hold in these relation schemas either. 
To illustrate why it is important to keep relations in 4NF, Figure E(a) shows the 

EMP relation with an additional employee Brown who has three dependents (‘Jim’ 
‘Joan’, and ‘Bob) and works on four different projects (‘W’, ‘X’, ‘Y’) and ‘Z’). There are 16 

tuples in EMP in figure E(a). I few decompose EMP into EMP_PROJECTS and 
EMP_DEPENDENTS as shown in Figure E(b) we need only store a total of 11 tuples in 
both relations. More ever these tuples are much smaller than the tuples in EMP. In 

addition the update anomalies associated with multi-valued dependencies are avoided. 
For example, if Brown starts working on another project, we must insert three tuples in 
EMP – one for each dependent. If we forgot to insert any one of those, the relation 
becomes inconsistent in that is incorrectly implies a relationship between project and 

dependent. However only a single tuple need be inserted in the 4NF relation 
EMP_PROJECTS. Similar problems occur with deletion and modification anomalies if a 
relation is not in 4NF. 

Figure E: 

 
(a) EMP 

 

ENAME PNAME DNAME 

(b) EMP_PROJECTS 
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Brown Z 

 
 

EMP_DEPENDENTS 
 

ENAME DNAME 
 

Smith John 

Smith Anna 

Brown Jim 

Brown Joan 

Brown Bob 
 

 

The EMP relation in Figure D (a) is not in 4NF because it represents two independent 

1: N relationships—one between employees and the projects they work on and the other 
between employees and their dependents. We sometimes have a relationship between three 
entities that depends on all three participating entities, such as the SUPPLY relation shown 
in Figure D (c) (Consider only the tuple in Figure D(c) above the dotted line for now). In this 

case a tuple represents a supplier supplying a specific part to a particular project, so there 
are no nontrivial MVDs. The SUPPLY relation is already in 4NF and should not be 
decomposed. Notice that relations containing nontrivial MVDs tend to be all key relations; 
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that is, their key is all their attributes taken together. 

 
Lossless Join Decomposition into 4NF Relations 

Whenever we decomposed a relation schema R into R1 = (X U Y) and R2 = (R – Y) based 
on an MVD X →→ Y that holds in R, the decomposition has the lossless join property. It can be 
shown that this is a necessary and sufficient condition for decomposing a schema into two 
schemas that have the lossless join property as given by property. 

 
PROPERTY Lj1’ 

 

The relation schemas R1 and R2 form a lossless join decomposition of R if and 
only if (R1 ∩ R2) →→ (R1 - R2) (or by symmetry, if and only if (R1 ∩ R2) →→ (R2 – 
R1). 

This is similar to property Lj1 of Section 13.1.3 except that Lj1 dealt with FDs only, 

whereas Lj1’ deals with both FDs and MVDs. We can use algorithm below which 
creates lossless join decomposition into relation schemas that are in 4NF(rather than 

in BCNF). Algorithm below does not necessarily produce a decomposition that 
preserves FDs. 
ALGORITHM Lossless join decomposition into 4NF relations 

Set D :={ R}; 

While there is a relation schemas Q in D that is not in 4NF do 
begin 
Choose a relation schema Q in D that is not in 4Nf; 
Find a nontrivial MVD X→→Y in Q that violates 4NF; 

Replace Q in D by two schemas (Q-Y) and (X U Y) 
End; 

 
 
13.9 Join Dependencies and Fifth Normal Form 

We saw that Lj1 and Lj1’ give the condition for a relation schemas R to be 
decomposed into two schemas R1 and R2 where the decompositions has the lossless 
join property. However in some cases there may be no lossless join decomposition into 
two relation schemas but there may be a lossless join decomposition into more than 
two relation schemas. These cases are handled by join dependency and fifth normal 
form. It is important to note that these cases occur very rarely and are difficult to 
detect in practice. 

A join dependency (JD) denoted by JD (R1, R2……….Rn) specified on relation 
schema R, specifies a constraint on instances r of R. The constraint states that every 
legal instance r of R should have a lossless join decomposition into R1, R2 ….. Rn that 
is, 

* ( Π<R1>(r), Π<R2>(r), …, Π<Rn>(r) ) = r 
Notice that a MVD is a special case of a JD where n=2. A join dependency JD(R1 

R2,………Rn) specified on relation schema R, is a trivial if one of the relation schemas Ri 
in JD(R1, R2…….Rn) is equal to R. Such dependency is called trivial because it has the 
lossless join property for any relation instance r of R and hence does not specify any 
constraint on R. We can now specify fifth normal form, which is also called project join 
normal form. A relation schema R is in fifth normal form (5NF) (or project join normal 
form (PJNF)) with respect to a set functional multi-valued and join dependencies if for 



 

every nontrivial join dependency JD (R1, R2 .......... Rn) in F+ (that is implied by F) every R, 
is a super-key of R. 

For an example of a consider once again the SUPPLY relation of Figure D (c). If it does 

not have a lossless decomposition into any number of smaller tables. Suppose that the 
following additional constraint always holds: Whenever a supplier supplies part p and a 
project j uses part p and the supplies at least one part to project j, then supplier will also be 
supplying part p to project j. This constraint can be restated in other ways and specifies a 

join dependency JD (R1, R2, R3) among the three projections R (SNAME, PARTNAME), R2 
(SNAME, PROJNAME) and R3 (PARTNAME, PROJNAME) of supply. If this constraint holds 
the tuples below the dotted line in Figure D (c) must exist in any legal instance of the 
SUPPLY relation with the join dependency is decomposed into three relations R1, R2 and R3 

that are each in 5NF. Notice that applying NATURAL JOIN to any two of these relations 
produces spurious tuples, but applying NATURAL JOIN to all three together does not. The 
reader should verify this on the example relation of Figure D(c) and its projections in Figure 

D(d). This is because only the JD exists but no MVDS are specified. Notice too that the JD 
(R1, R2, R3) is specified on all legal relation instance not just on the one shown in Figure 
D(c). 

Discovering JDs in practical data based with hundreds of attributes is difficult; 

hence current practice of data base design pays scant attention to them. 



 

 
 

13.10 Overall Database design process 
In Normalization we have assumed that we have a schema R, and proceeded to 

normalize it. There are several ways in which we could have come up with the schema 

R: 
1. R could have been generated when converting an E-R Diagram to a set of 

tables. 
2. R could have been a single relation containing all the attributes that are 

of interest. The normalization process breaks up R into smaller relations. 
3. R could have been the result of some ad hoc design of relations, which we then 

test to verify that it satisfies a desired normal form. 
No we examine the implications of these approaches and also the practical issues in 

database design, including de-normalization for performance and example of bad database 
design not detected by normalization. 
 
E-R model and Normalization 

We carefully define an E-R Diagram, identifying all entities correctly; the tables 

generated from the E-R diagram should not need further normalization. However, there can 
be functional dependencies between the attributes of an entity. For instance, suppose an 
employee entity had attributes department-number and department-address, and there is a 

functional dependency department-number → department-address. We would then need to 
normalize the relation generated from employee. 

Most examples of such dependencies arise out of poor E-R diagram design. In 
the above example, if we did the E-R diagram correctly, we would have created a 

department entity with attribute department-address and a relationship between 
employee and department. Similarly, a relationship involving two or more than two 
entities many not be in a desirable normal form, since most relationships are binary, 

such cases are relatively rare. (In fact, some E-R diagram variants actually make it 
difficult or impossible to specify non-binary relations.). 

Functional dependencies can help us detect poor E-R design. If the generated 

relations are not in desired normal form, the problem can be fixed in the E-R diagram. 
That is normalization can be done formally as part of data modeling. Alternatively, 
normalization can be left to the designer’s intuition during E-R modeling and can be 

done formally on the relations generated from the E-R model. 
 
The Universal Relation Approach 

The second approach to database design is to start with a single relation 
schema containing all attributes of interest and decompose it. One of our goals in 

choosing a decomposition was that it be a lossless-join decomposition. To consider 
losslessness, we assumed that it is valid to talk about the join of all relations of the 
decomposed database. 

Consider the database of Figure F, showing a decomposition of the loan-info 
relation. The figure depicts a situation in which we have not yet determined the 
amount of loan L-58, but wish to record the remainder of the data on the loan. If we 
compute the natural join of these relations, we discover that all tuples referring to loan 
L-58 disappear. In other words there is no loan-info relation corresponding to the 
relations of Figure F. Tuples that disappear when we compute the join are dangling 



 

tuples formally let r1(R1), r2(R2) ……, rn(Rn) be a set of relations. A tuple t of relation r is 
a dangling tuple if t is not in the relation. 

Π Ri (r1  r2  …  rn ) 
Dangling tuples may occur in practical database  applications.  They represent 

incomplete information, as they do in our example, where we wish to store data about a loan 

that is still in the process of being negotiated. The relation r1  r2  …  rn is called a universal 
relation, since it involves all the attributes in the universe defined by R1 U R2 U … U Rn. 

Banch-name Loan-number 
Round Hill L-58 

 
Loan-number Amount 

  

 
Loan-number Customer-name 
L-58 Johnson 

Figure F : Decomposition of loan-info. 
The only way that we can write a universal relation for the example of Figure F 

is to include null values in the universal relation. We know that null values present 

several difficulties. Because of them, it may be better to view the relations of the 
decomposed design as representing the database, rather than as the universal relation 
whose we decomposed during the normalization process. 

Note that we cannot enter all incomplete information into the database of Figure F 

without resorting to null values. For example, we cannot enter a loan number unless we know 
at least one of the followings: 

 The customer name 

 The branch name 

 The amount of the loan 
Thus, a particular decomposition defines a restricted form of incomplete 

information that is acceptable in our database. 
The normal forms that we defined generate good database design from the point 

of view of representation of incomplete information. Returning again to the example of 

Figure F we should not want to allow storage of the following fact. “There is a loan 
(whose number is unknown) to Jones in the amount of $100.” This is because 

Loan-number → customer-name amount 

And therefore the only way that we can relate customer-name and amount is 
through loan-number. If we do not know the loan number, we cannot distinguish this 
loan from other loans with unknown numbers. 

In other words, we do not want to store data for which the key attributes are 
unknown. Observe that the normal forms that we have defined do not allow us to store 
that type of information unless we use null values. Thus our normal forms allow 
representation of acceptable incomplete information via dangling tuples, while 

prohibiting the storage of undesirable incomplete information. 

Another consequence of the universal relation approach to database design is 
that attribute names must be unique in the universal relation. We cannot use name to 
refer to both customer-name and to branch-name. It is generally preferable to use 

unique names, as we have done. Nevertheless, if we defined our relation schemas 
directly rather than in terms of a universal relation, we could relations on schemas 



 

such as the following for our banking example: 

 
branch-loan (name, number) 

loan-customer (number, name) 

amt (number, amount) 

Observe that, with the preceding relations expressions such as branch-loan ∞ 

loan- customer are meaningless. Indeed the expression branch-loan ∞ loan-customer 

finds loans made by branches to customers who have the same name as the name of 
the branch. 

In a language such as SQL, however a query involving branch-loan and loan- 
customer must remove ambiguity in references to name by prefixing the relation name. 
In such environments, the multiple roles for name (as branch name and as customer 

name) are less troublesome and may be simpler to use. 
We believe that using the unique-role assumption-that each attribute name has a 

unique meaning in the database- is generally preferable to reusing of the same name in 

multiple roles. When the unique role assumption is not made, the database designer must be 
especially careful when constructing a normalized relational-database design. 
De-normalization for Performance 

Occasionally database designers choose a schema that has redundant 

information; that is, it is not normalized. They use the redundancy to improve 
performance for specific applications. The penalty paid for not using a normalized 
schema is the extra work in terms of coding time and execution time) to keep 
redundant data consistent. 

For instance, suppose that the name of an account holder has to be displayed 
along with the account number and balance every time the account is accessed. In our 
normalized schema, this requires a join of account with depositor. 

One alternative to computing the join on the fly is to store a relation containing all 

the attribute of account and depositor. This makes displaying the account information faster. 
However the balance information for an account is repeated for every person who owns the 
account and all copies must be updated by the application, when ever the account balance 

is updated. The process of taking a normalized schema and making it non0normalized is 
called de-normalization, and designers use it to tune performance of systems to support 
time-critical operations. 

A better alternative, supported by many database systems today, is to use the 

normalized schema, and additionally store the join or account and depositor as a 
materialized view. (Recall that a materialized view is a view whose result is stored in 
the database, and brought up to date when the relations used in the view are updated.) 

Like de-normalization, using materialized view does have space and time overheads; 
however, it has the advantage that keeping the view up to date is the job of the 
database system, not the application programmer. 
Other Design Issues 

There are some aspects of database design that are not addressed by 

normalization and can thus lead to bad database design. We give examples here 
obviously, such designs should be avoided. 

Consider a company database, where we want to store earnings of companies in 

different years. A relation earnings (company-id, year, amount) could be used to store 
the earnings information. The only functional dependency on this relation is company- 



 

id, year→ amount, and the relation is in BCNF. 

An alternative design is to use multiple relations, each storing the earnings for a 
different year. Let us say the years of interest are 2000, 2001 and 2002; we would then have 
relations of the form earnings-2000, earnings-2001, and earnings-2002, all of which are on 

the schema (company-id, earnings). The only functional dependency here on each relation 
would be company-id→ earnings so these relations are also in BCNF. 

However this alternative design is clearly a bad idea—we would have to create a new 

relation every year, and would also have to write new queries every year, to take each new 
relation into account. Queries would also be more complicated since they may have to refer 
to many relations. 

Yet another way of representing the same data is to have a single relation 
company-year (company-id, earnings-2000, earnings-2001, earnings-2002). Here the 
only functional dependencies are from company-id to the other attributes, and again 
the relation is in BCNF. This design is also a bad idea since it has problems similar to 

the previous every year. Queries would also be more complicated, since they may have 
to refer many attributes. 

Representations such as those in the company-year relation with one column for each 
value on an attribute, are called crosstab; they are widely used in spreadsheets and reports and 

in data analysis tolls. While such representations are useful for display to users, for the reasons 
just given, they are not desirable in a database design SQL extensions have been proposed to 
convert data from a normal relational representation to a crosstab, for display. 

 

13.11 Summary 
Normalization is a design technique that is widely used as a guide in designing 

relational databases. It is a process of decomposing a relation into relation(s) with fewer 
attributes by minimizing the redundancy of data and minimizing insertion, deletion and 

updation anomalies. It may be defined as step by step reversible process of transforming an 
unnormalized relation into relations with progressively simpler structures. The relation is in 
first normal form if all the attribute values are atomic and non decomposable. A relation is in 
2NF if it is in 1 NF and non key attributes should be fully functionally dependent on the 

primary key. A relation is in 3 NF if it is 2 NF and non key attributes should not be 
transitively functionally dependent on Primary key. A relation is in BCNF if and only if every 
determinant is a candidate key. A relation is 4 NF if it is in BCNF and it contains no 
multivalued dependencies. And finaly a relation is in 5NF or Project Join Normal form if it 

cannot have a lossless decomposition into any number of smaller tables. 

 

13.12 Questionnaires: 
4. What do you mean by Normalization? Why there is a need for 

normalization? 

5. Explain First, Second and third Normal Forms with the help of examples. 
6. Explain Boyce-Codd Normal Form with example. How it is different from 

3rd Normal Norm? 

7. Does every relation having two attributes satisfy Boye Codd Normal form? If 

Yes, justify your answer giving suitable example. 
8. Define Multi-valued dependency giving example. 

9. Explain Fourth Normal form with example. 



 

10. Define Join Dependency with example. 
11. Explain fifth Normal form using Join Dependency using suitable 

example. 
12. Explain the various insert, update and delete anomalies in various 

normal forms. 
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14.1 Introduction: 

After completing the database we need to take measures for protecting the 

database. For protecting the database we have to take care of database integrity and in 
the coming section we will study the various methods for maintaining the integrity of 

the database. Database Protection also includes data recovery that means if database 
get corrupted due to some reasons like Hard Disk failure or other reasons – how to 
recover the database. 

 
14.2 Database Integrity 

The term integrity refers to the correctness or accuracy of data in database. Integrity 
constraints ensure that changes made to the database by authorized users do not result in a 

loss of data consistency. Thus integrity constraints guard against accidental damage to the 
database. 

We have already seen two forms of integrity constraints: 

 Key declarations – the stipulation that certain attributes form a 

candidate key for a given entity set. 

 Form of a relationship- many to many, one to many, one to one. 

In general, an integrity constraint can be an arbitrary predicate pertaining to the 

database. However arbitrary predicates may be costly to test. Thus we concentrate on 
integrity constraints that can be tested with minimal overhead. In addition to protecting 
against accidental introduction of inconsistency, the data stored in the database needs to be 

protected from unauthorized access and malicious destruction or alteration. 

14.2.1 Domain Constraints 
Domain Constraints state that a range of possible values must be associated 

with every attribute. There are a number of standard domain types, such as integer 
types, character types and date/time types defined in SQL. Declaring an attribute to be 
of a particular domain acts as a constraint on the values that it can take. Domain 
constraints are the most elementary form of integrity constraint. They are tested easily 

by the system whenever a new data item is entered into the database. 
It is possible for several attributes to have the same domain. For example the 

attribute customer-name and employee-name might have the same domain: the set of 
all person names. However, the domains of balance and branch-name certainly ought 
to be distinct. It is perhaps less clear whether customer-name and branch-name should 

have the same domain. At the implementation level both customer names and branch 
names are character strings. However we would normally not consider the query “Find 



 

all customers who have the same name as a branch” to be a meaningful query. Thus if 

we view the database at the conceptual, rather than the physical level, customer-name 

and branch-name should have distinct domains. 
From the above discussion, we can see that a proper definition of domain 

constraint not only allows us to test values inserted in the database, but also permits 
us to test queries to ensure that the comparisons made make sense. The principle 
behind attribute domains is similar to that typing of variables in programming 
languages. Strongly typed programming languages allow the compiler to check the 

program in greater detail. 
The create domain clause can be used to define new domains. For example the 

statements: 

create domain Dollars numeric (12,2) 

create domain Pounds numeric (12,2) 
define the domains Dollars and Pounds to be decimal numbers with a total of 12 digits, 
two of which are placed after the decimal point. An attempt to assign a value of type 
Dollars to a variable of type Ponds would result in a syntax error, although both are of 

the same numeric type. Such an assignment is likely to be due to programmer error, 
where the programmer forgot about the differences in currency. Declaring different 
domains for different currencies helps catch such errors. 

Values of one domain can be cast (that is, converted) to another domain. If the 
attribute A in relation r is of type Dollars, we can convert it to Pounds by writing 

cast r.A as Pounds 

In a real application we would of course multiply r.A by a currency conversion 
facts before casting it to pounds. SQL also provides drop domain and after domain 
clauses to drop or modify or modify domains that have been created earlier. 

The check clause in SQL permits domains to be restricted in powerful ways that 
most programming language type systems do not permit. Specifically the check clause 

permits the schema designer to specify a predicate that must be satisfied by any value 
assigned to a variable whose type is the domain. For instance a check clause can 
ensure that an hourly wage domain allows only values greater than a specified value 
(such as the minimum wage): 

create domain HourlyWage numeric(5,2) 
constraint wage-value-test check (value >=4.00) 

The domain HourlyWage has constraint that ensures that the hourly wage is greater 

than 4.00. The clause constraint wage-value-test is optional, and is used to give the name 
wage-value-test to the constraint. The name is used to indicate which constraint an update  
violated. 

The check can also be used to restrict a domain to not contain any null values: 
create domain AccountNumber char(10) 

constraint account-number-test check (value not null) 
Another example, the domain can be restricted to contain only a specified set of 

values by using the in clause: 

create domain Account type char(10) 

constraint account-type-test 
check (value in (‘Checking’, ‘Saving’)) 

The preceding check conditions can be tested quite easily when a tuple is 
inserted or modified. However in general the check conditions can be more complex 



 

(and harder to check), since sub queries that refer to other relations are permitted in 

the check condition. For example this constraint could be specified on the relation 
deposit. 

check (branch-name in (select branch-name from branch)) 
The check condition verifies that the branch-name in each tuple in the deposit 

relation is actually the name of a branch in the branch relation. Thus the condition has to  

be checked not only when a tuple is inserted or modified in deposit but also when the 
relation branch changes (in this case, when a tuple is deleted or modified in  relation 
branch). 

The preceding constraint is actually an example of a class of constraints called 

referential-integrity constraints. 
Complex check conditions can be useful when we want to ensure integrity of 

data but we should use them with care, since they may be costly to test. 
 

14.2.2 Referential Integrity 
Often, we wish to ensure that a value that appears in one relation for a given set 

of attributes also appears for a certain set of attributes in another relation. This 
condition is called referential integrity 

 
Basic Concepts 

 

Consider a pair of relations r(R) and s(S) and the natural join r   s. There may  
be a tuple tr in r that does not join with any tuple in s. That is, there is no ts in s such 
that tr [R ∩ S ] = ts [R ∩ S]. Such tuples are called dangling tuples. Depending on the 
entity set or relationship set being modeled dangling tuples may or may not be 
acceptable. 

Suppose there is a tuple t1 in the account relation with t1[branch-name] = 
"Lunartown" but there is no tuple in the branch relation for the “Lunartown” branch. 
This situation would be undersirable. We expect the branch relation to list all bank 
branches. Therefore tuple t1 would refer to an account at a branch that does not exist. 
Clearly we would like to have an integrity constraint that prohibits dangling tuples of 
this sort. 

Not all instances of dangling tuples are undersirable however. Assume that there is a 
tuple t2 in the branch relation with t2 [branch-name] = “Mokan” but there is no tuple in the 
account relation for the Mokan branch. In this case a branch exists that has no accounts. 
Although this situation is not common it may arise when a branch is opened or its about to 
close. Thus we do not want to prohibit this situation. 

The distinction between these two examples arises from two facts. 

 The attribute branch-name in Account schema is a foreign key 
referencing the primary key of Branch schema. 

 The attribute branch name in Branch schema is not a foreign key. (Recall 

that a foreign key is a set attribute in a relation schema that forms a primary 

key for another schema.) 
In the Lunartown example, tuple t1 in account has a value on the foreign key branch- 

name that does not appear in branch. In the Mokan-branch example tuple t2 in branch has a 
value on branch-name that does not appear in account, but branch-name is not a foreign key. 
Thus the distinction between our two examples of dangling tuples is the presence of a foreign 
key. 



 

R 

En 

E1 

En-1 
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Let r1 (R1) and r2 (R2) be relations with primary keys K1 and K2 respectively. We 
say that a subset α of R2 is a foreign key referencing K1 in relation r1 if it is required 
that for every t2 in r2 there must be a tuple t1 in r1 such that t1 [K1] = t2 [α]. 
Requirements of this form are called referential integrity constraints or subset 
dependencies. The latter term arises because the preceding referential-integrity 
constraint can be written as Πα (r2) ≤ ΠK1(r1). Note that for a referential-integrity 
constraint to make sense either must be equal to K1 or α and K1 must be compatible 
sets of attributes. 

 Referential Integrity and the E-R Model 
Referential-integrity constraints arise frequently. If we derive our relational- 

database schema by constructing tables from E-R diagrams, then every relation arising 
from a relationship set has referential-integrity constraints. Figure below shows an n-
ary relationship set R, relating entity sets E1, E2, … ,En. Let Ki denote the primary key 

of Ei. The attributes of the relation schema for relationship set R include K1 U K2 U ...  
U Kn. The following referential integrity constraints are then present: For each i, Ki in 
the schema for R is a foreign key referential Ki in the relation schema generated from 
entity set Ei. 
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An n-ary relationship set 

 
Another source of referential-integrity constraints is weak entity sets. Recall 

that the relation schema for a weak entity set must include the primary key of the 
entity set on which the weak entity set depends. Thus the relation schema for each 

weak entity set includes a foreign key that leads to a referential integrity constraint. 
 

14.2.4 Database Modification 
Database modifications can cause violations of referential integrity. We list here 

the test that we must make each type of database modification to preserve the  

following referential integrity constraint: 
Πα (r2) ≤ Πk (r1) 

 Insert. If a tuple t2 is inserted into r2, the system must ensure that there 
is a tuple t1 in r1 such that t1 [K] = t2[α] 

t2[α] ε Πk (r1) 
 Delete. If a tuple t1 is deleted from r1 the system must compute the set 

of tuples in r2 that reference t1: 
σα = t1[k] (r2) 



 

If this set is not empty, either the delete command is rejected as an error, or the 
tuples that reference t1 must themselves be deleted. The latter solution may lead to 
cascading deletions, since tuples may reference tuples that reference t1 and so on. 
Update : We must consider two cases for update: updates to the referencing relation 

and updates to the referenced relation (r1). 

 If a tuple t2 is updated in relation r2 and the update modifies values for 
the foreign key then a test similar to the insert case is made. Let t2' 
denote the new value of tuple t2. The system must ensure that 

t2'[a] ε Πk (r1) 
 If a tuple t1 is updated in r1 and the update modifies values for the 

primary key (K), then a test similar to the delete case is made. The 
system must compute. 

σα =t1[K] (r2) 
using the old value of t1 (the value before the update is applied). If this set is not 
empty, the update is rejected as an error or the update is cascaded in a manner similar 

to delete. 

 

14.2.5 Referential Integrity in SQL 
Foreign keys can be specified as part of the SQL create table statement by 

using the foreign key clause. We illustrate foreign-key declarations by using the SQL 
DDL definition of part of our bank database shown in Figure K. 

By default a foreign key references the primary key attributes of the referenced 
table. SQL also supports a version of the references clause where a list of attributes of 
the referenced relation can be specified explicitly. The specified list of attributes must 

be declared as a candidate key of the referenced relation 
We can use the following short form as part of an attribute definition to declare 

that the attribute forms a foreign key: 
branch-name char(15) references branch 

When a referential-integrity constraint is violated, the normal procedure is to reject the 
action that caused the violation. However a foreign key clause can specify that if a delete or 

update action on the referenced relation violates the constraint, then instead of rejecting the 
action, the system must take steps to change the tuple in the constraint on the relation 
account: 

create table account 

( … 

Foreign key (branch-name) references branch 

on delete cascade 
on update cascade, 

… ) 



 

create table customer 
(customer-name char(20) 
customer-street char(30) 
customer-city char(30) 
primary key (customer-name)) 

create table branch 
(branch-name char(15) 
branch-street char(30) 
assets integer 
primary key (branch-name) 
check (assets >=0)) 

create table account 
(account-number char(10) 
branch-name char(15) 
balance integer 
primary key (account-number) 
foreign key (branch-name) references branch, 

check (balance >=0)) 
create table depositor 

(customer-name char(20) 
account-number char(10) 
primary key (customer-name, account-number) 
foreign key (customer-name) references customer, 
foreign key (account-number) references account) 

Figure K: SQL data definition for part of the bank database 
 

Because of the clause on delete cascade associated with the foreign key 
declaration if a delete of a tuple in branch results in this referential integrity constraint 
being violated the system does not reject the delete. Instead the delete "cascades" to the 

accout relation, deleting the tuple that refer to the branch tuple that was deleted. 
Similarly, the system does not reject an update to a field referenced by the constraint 
even if it violates the constraint; instead the system updates the field branch-name of 
the referencing tuples in account to the new value as well. SQL also allows the foreign 

key clause to specify actions other than cascade, if the constraint is violated. The 
referencing field (here, branch-name) can be set to null (by using set null in place of 
cascade), or to the default value for the domain (by using set default). 

If there is a chain of foreign key dependencies across multiple relations, a 

deletion or update at one end of the chain can propagate across the entire chain. An 
interesting case where the foreign key constraint on a relation references the same 
relation appears in Exercise. If a cascading update or delete cause a constraint 

violation that cannot be handled by a further cascading operation, the system aborts 
the transaction. As a result, all the changes caused by the transaction and its 
cascading actions are undone. 

Null values complicate the semantics of referential integrity constraint in SQL. 

Attributes of foreign keys are allowed to be null, provided that they have not other wise 
been declared to be non-null. If all the columns of a foreign key are non-null in a given 

tuple, the usual definition of foreign key constraint is used for that tuple. If any of the 
foreign key columns is null, the tuple is defined automatically to satisfy the constraint. 



 

This definition may not always be the right choice, so SQL also provides 

constructs that allow you to change the behavior with null values, we do not discuss 
the constructs here. To avoid such complexity, it is best to ensure that all columns of a 
foreign key specification are declared to be non-null. 

Transactions may consist of several steps, and integrity may be violated 

temporarily after one step but a later step may remove the violation. For instance, 
suppose we have a relation-married person with primary key-name, and an attribute 
spouse, and suppose that spouse is a foreign key on married person. That is the 
constraint says that the spouse attribute must contain a name that is present in the 

person table. Suppose we wish to note the fact that John and Mary are married to  
each other by inserting two tuples one for John and one for Mary in the above relation. 
The insertion of the first tuple violate the foreign key constraint, regardless of which of 
the two tuples is inserted first. After the second is inserted the foreign key constraint 

would hold again. 
To handle such situations integrity constraints are checked at the end of a 

transaction and not at intermediate steps. 
 

14.2.6 Assertions 
An Assertion is a predicate expressing a conditions that we wish the database 

always to satisfy. Domain constraint and referential integrity constraints are special 
forms of assertions. We have paid substantial attention to these forms of assertions 

because they are easily tested and apply to a wide range of database applications. 
However there are many constraints that we cannot express by using only these special 
forms. Two examples of such constraints are: 

 The sum of all loan amounts for each branch must be less than the sum 

of all account balances at the branch. 

 Every has at least one customer who maintains an account with a 

minimum balance of $1000.00. 
An assertion in SQL takes the form 

create assertion <assertion-name> check <predicate> 
Here is how the two examples of constraints can be written. Since SQL does not 

provide a "for all X P (X)" construct (where P is a predicate) we are forced to implement the 

construct by an equivalent "not exists X" such that not P(X) construct which can be written 

in SQL. We write 

create assertion sum-constraint check 
(not exists (select * from branch 
where (select sum (amount) from loan 

where loan. branch-name = branch.branch-name) 
>=(select sum (balance) from account 

where account.branch-name = branch,branch-name))) 

 
create assertion balance-constraint check 

(not exists (select * from loan 
where not exists(select * 
from borrower, depositor, account 
where loan.loan-number = borrower.loan-number 

and borrower.costomer-name = depositor.customer-name 
and depositor.account-number = account.account-number 



 

and account.balance >= 1000))) 

When an assertion is created, the system tests it for validity. If the assertion is 
valid, then any future modification to the database is allowed only if it does not cause 
that assertion to be violated. This testing may introduce a significant amount of 
overhead if complex assertions have been made. Hence, assertions should be used with 

great care. The high overhead of testing and maintaining assertions has led some 
system developers to omit support for general assertions, or to provide specialized 
forms of assertions that are easier to test. 

14.3 Database Recovery 
Recovery in database system means, primarily, recovering the database itself: 

that is, restoring the database to a state that is known to be correct (or rather, 
consistent) after some failure has rendered the current state inconsistent. 

14.3.1 Transactions 
We begin our discussions by examining the fundamental notion of a 

transaction. A transaction is a logical unit of work. Consider the following example. 
Suppose the parts relation P includes an additional attribute TOTQTY, representing the 

total shipment quantity for the part in question; in other words, the value of TOTQTY 
for any given part is supposed to be equal to the sum of all QTY values, taken over all 
shipments for that part. Now consider the pseudocode procedure shown in Figure 
below, the intent of which is to add a new shipment for supplier S5 and part P1, with 

quantity 1000, to the database (the INSERT inserts the new shipment, the UPDATE 
updates the TOTQTY value for part P1 accordingly). 

 
 

 
 

The point of the example is that what is presumably intended to be a single 

atomic operation- “add a new shipment”- in fact involves two updates to the database, 
one INSERT operation and one UPDATE operation. What is more, the database is not 
even consistent between those two updates; it temporarily violates the constraint that 
the value of TOTQTY for part P1 is supposed to be equal to the sum of all QTY values 

for part P1. Thus a logical unit of work (i.e., a transaction) is not necessarily just a 
single database operation; rather, it is a sequence of several such operations, in 

BEGIN TRANSACTION; 
 

INSERT INTO SP 
RELATION { TUPLE {S# S# (‘S5’), 

P# P# (‘P1’), 
QTY QYT (1000) } } ; 

IF any error occurred THEN GO TO UNDO; END IF; 
 

UPDATE P WHERE P# = P# (‘P1’) 
TOTQTY := TOTQTY + QTY (1000); 

IF any error occurred THEN GO TO UNDO; END IF; 
 

COMMIT; 
GO TO FINISH; 

 
UNDO: 

ROLLBACK; 
 

FINISH: 
RETURN; 



 

general that transforms a consistent state of the database into another consistent 

state, without necessarily preserving consistency at all intermediate points. 
Now, it is clear that what must not be allowed to happen in the example is for 

one of the updates to be executed and the other not, because that would leave the 
database in an inconsistent state. Ideally of course we would like a cast iron guarantee 

that both updates will be executed. Unfortunately, it is impossible to provide such a 
guarantee-there is always a chance that things will go wrong, and go wrong moreover 
at the worst possible moment. For example, a system crash occur between the INSERT 
and the UPDATE, or an arithmetic overflow might occur on the UPDATE, etc. But a 

system that support transaction management does provide the next best thing to such 
a guarantee. Specifically, it guarantees that if the transaction reaches some updates 
and then a failure occurs (for whatever reason) before the transaction reaches its 
planned termination, then those updates will be undone. Thus the transaction either 

executes in its entirety or is totally canceled i.e. made as if it never executed at all. In 
this way, a sequence of operations that is fundamentally not atomic can be made to 
look as if it were atomic from an external point of view. 

The system component that provides this atomicity- or resemblance of 

atomicity- is known as the transaction manager (also known as the transaction 
processing monitor or TP monitor ) and the COMMIT and ROLLBACK operations are 

the keep to the way it works; 

 The COMMIT operation signals successful end of transaction; it tells the 

transaction manager that a logical unit of work has been successfully 
completed and the database is (or should be) in a consistent state again 
and all of the updates made by that unit of work can now be committed 
or made permanent. 

 By contrast the ROLLBACK operation signals unsuccessful end of 
transaction; it tells the transaction manager that something has gone 

wrong. The database might be in an inconsistent state and all of the 
updates made by the logical unit of work so far must be rolled back or 
undone. 

In the example therefore we issue a COMMIT if we get through the two updates 

successfully which will commit the changes in the data base and make them 
permanent. If any thing goes wrong however- i.e., if either of the updates raises an 
error condition- then we issue a ROLLBACK instead to undo any changes made so far. 
Note: Even if we issue a commit instead the system should in principal check the 

database integrity constraint. It detects the fact that the database is inconsistent and 
force a ROLLBACK any way. However we don’t assume that the system is aware of all 
pertinent constraint and so the users issued ROLLBACK is necessary. Commercial 
DBMSs do not do very much COMMIT time integrity checking at the time of writing. 

Incidentally we should point out that a realistic application will not only update 
the database (or attempt to) but will also send some kind of message back to the end 
user indicating what has happened. In the example we might send the message 
shipment added if the COMMIT is reached or the message error shipment not added 

otherwise. Message handling in turn has additional implications for recovery. 
Note: At this juncture you might be wondering how it is possible to undo and 

update. The answer of course is that the system maintains a log or journal on tape or 
(more commonly) disk on which details of all updates- in particular before and images 

of the updated objects- are recorded. Thus, if it becomes necessary to undo some 



 

particular update the system can use the corresponding log entry to restore the 

updated object to its previous value. 
(Actually the fore going paragraph is somewhat over simplified . In practice the 

log will consist of two portions an active or online portion and an archive or offline 
portion. The online portion is used during normal system operation to record details of 

updates as they are performed and is normally held on disk. When the online portion 
becomes full its contents are transferred to the offline portion which- because it is 
always processed sequentially- can be held on the tape. 

One further point; the system must guarantee that individual statements are 

themselves atomic (all or nothing). This consideration becomes particularly significant 
in relational system, where statements are set-level and typically operate on many 

tuples at a time; it must not be possible for such a statement to fail in the middle and 
leave the database in an inconsistent state (e.g. with some tuples update and some 
not). In other words if an error does occur in the middle of such a statement, then the 
database must remain totally unchanged. 

 
14.3.2 Transaction Recovery 

A transaction begins with successful execution of a BEGIN TRANSACTION statement 

and it ends with successful execution of either COMMIT or a ROLLBACK statement. 
COMMIT establishes what is called, among many other things, a commit point (also 
especially in commercial products-known as a synch point). A commit point thus 
corresponds to the end of a logical unit of work, and hence to a point at which the database 

is or should be in a consistent state. ROLLBACK, by constraint rolls the database back to 
the state it was in at BEGIN TRANSACTION which effectively means back to the previous 
commit point. (The phrase “the previous commit point” is still accurate, even in the case of 
the first transaction in the program, if we agree to think of he first BEGIN TRANSACTION in 

the program as tacitly establishing an initial “ commit point”. 
Note: Throughput this section the term “database” really means just that portion of the 
database being accessed by the transaction under consideration. Other transactions 
might be executing in parallel with that transaction and making changes to their own 

portions, and so “the total database” might not be in a fully consistent state at a 
commit point. However we are ignoring the possibility does not materially affect the 
issue at hand, of course. 

When a commit point is established: 
1 All updates made by the executing program since the previous commit 

points are committed; that is, they are made permanent. Prior to the 
commit point, all such updates should be regarded as tentative only— 
tentative in the sense that they might subsequently be undone (i.e. rolled 

back). Once committed an update is guaranteed never to be undone (this 
is the definition of “ committed”). 

2 All database positioning is lost and all tuple locks are released. 
“Database poisoning” here refers to the idea that at any given time an 
executing program will typically have address ability to certain tuples 

(e.g., via certain cursors in the case of SQL, this address ability is lost at 
a commit point. “Tuple locks” are explained in the next chapter. Note 
some systems do provide an option by which the program in fact might 



 

be able to retain address ability to certain tuples (and therefore retain 

certain tuple locks) from one transaction to the next. 
Paragraph 2 here – excluding the remark about possibly retaining some address 

ability and hence possibly retaining certain tuple locks—also applies if a transaction 
terminates with ROLLBACK instead of COMMIT. Paragraph 1 of course does not. 

Note carefully that COMMIT and ROLLBACK terminate the transaction, not the 

program. In general a single program execution will consist of a sequence of several 
transactions running one after another, as illustrated in Figure below: 

 
Program execution is a sequence of transactions 

Now let us return to the example of the previous section. In that example we 
include explicit tests for errors, and issued an explicit ROLLBACK if any error was 
detected. But of course the system cannot assume that application programs will 
always include explicit tests for all possible errors. Therefore the system will issue an 

implicit ROLLBACK for any transaction that fails for any reason to reach its planned 
termination (where “planned termination” means either an explicit COMMIT or an 
explicit ROLLBACK). 

We can now see therefore, that transactions are not only the unit of works but 

also the unit of recovery. For if a transaction successfully commits, then the system 
will guarantee that its updates will be permanently installed in the database, even if 

the system crashed the very next moment. It is quite possible, for instance, that the 
system might crash after the COMMIT has been honored but before the updates have 
been physically written to the database- they might still be waiting in a main memory 
buffer and so be lost at the time of crash. Even if that happens the system’s restart 

procedure will still install those updates in the database; it is able to discover the 
values to be written by examine the relevant entries in the log. (it follows that the log 
must be physically written before COMMIT processing can complete- the write ahead 
log rule.) Thus the restart procedure will recover any transactions that completed 

successfully but did not manage to get their updates physically written prior to the 
crash; hence as stated earlier transaction are in deed the unit of recovery. 

Note: In the next chapter we will see there is a unit on concurrency also. 
Further since they are supposed to transform a consistent state of the database in to 

another consistent state they can also be regarded as a unit of integrity. 
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14.3.3 The ACID Properties 
Transactions have four important properties- atomicity, consistency, isolation and 

durability (referred to colloquially as “the ACID properties”) 

 Atomicity: Transaction are atomic (all or nothing) 

 Consistency: Transaction preserves database consistency. That is a 

transaction transforms a consistent state of the database in to another 
consistent state without necessarily preserving consistency at all 
intermediate points. 

 Isolation: Transactions are isolated from one another. That is even 

though in general there will be many transactions running concurrently 
at any given transaction updates are concealed from all the rest until 

that transaction commits. Another way of seeing the same thing of that 
for any two distinct transactions T1 and T2, T1 might see T2’s updates 
(after T2 has committed) or T2 might see T1’s updates (after T1 has 
committed ) but certainly not both. 

 Durability: Once a transaction commits it updates survive in a database 
even if there is subsequent system crash. 

 
14.3.4 System Recovery 

The system must be prepared to recover not only from purely local failures such 
as occurrence of an over flow condition with in an individual transaction but also from 
“Global” failures such as power outage. A local failure by definition effects only the 

transaction in which the failure has actually occurred. A global failure, by contrast, 
affects all of the transactions in progress at the time of failure and hence has 
significant system wide implications. In this section and the next we briefly consider 
what is involved in recovering from a global failure. Such failures fall in to two 

categories : 

 System failures: (e.g., power outage), which effect all transactions, currently in 
progress but do not physically damage the database. A system failure is some 

times called a soft crash. 

 Media failures: (e.g. head crash on disk), which do cause damage to the 
database or to some portion of it and effect at least those transactions 

currently using that portion. A media failure is sometimes called a 
hard crash. 

The key point regarding system failure is that the contents of main memory are 
lost (in particular the database buffers are lost). The precise state of any transaction 

can therefore never been successfully completed and so must be undone- i.e. rolled 
back- when the system restarts. 

Further more it might also be necessary to re do certain transactions at restart 
time that did successfully complete prior to the crash but did not manage to get their 

updates transferred from the database buffers to the physical database. 
The obvious question therefore arises; how does the system know at restart time 

which transactions to undo and which to redo? The answer is as follows. At certain 
prescribed intervals typically whenever some prescribed numbers of entries have been 

written to the log- the system automatically take a check point. Taking a check point 
involves (a.) Physically writing “(force writing”) the content of the database buffers out 
to the physical database and (b) physically writing a special check point record out to 
the physical log. The check point record gives a list of all transactions that were in 



 

progress at the time the check point was taken. To see how this information is used 

consider the following Figure which is read as follows(note that time in the fig. Flows 
from left to right) 

 A system failure has occurred at time tf. 

 The most recent check point prior to time tf was taken at a time tc. 

 Transaction of type t1 completed prior to time tc. 

 Transaction of type T2 started prior to time tc and completed after time 
tc and before time tf. 

 Transaction of type T3 also started prior to time tc but did not complete 

by time tf. 

 Transaction of type T4 started after time tc and completed before time tf. 

 Finally transaction of type T5 also started after time tc but did not 

complete by time tf. 

 
Five transaction categories 

It should be clear that when the system is restarted transaction of type T3 and 
T5 must be undone, and transaction of types T2 and T4 must be redone. Note however 
that transactions of type T1 do not enter in to the restart process at all because its 
updates were forced to the database at time tc as part of the check point process. Note 
two that transaction that completed unsuccessfully (i.e. with the rollback) before time 
tf also do not enter into the restart process at all(why not?). 

At restart time therefore the system first goes through the following procedure in 

ordered to identify all transaction of types T2 to T5; 
1 Start with two lists of transactions the undo list and the redo list. Set the 

undo list equal to the list of all transactions given in the most recent check 

point record; set the redo list is empty. 
2 Search forward through the log starting from the check point record. 
3 If a BEGIN TRANSACTION log entry is found for transaction T add T to 

the undo list. 

4 If COMMIT log entries found for transaction T move T from the UNDO list 

to the REDO list. 
5 When the end of log is reached the UNDO and REDO list, identify 

respectively transactions of types T3 and T5 and transaction of types T2 

and T4. 
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The system now works backward through the log undoing the transactions in 

the UNDO list; then it works forward again redoing in the transaction in the REDO list. 
Note: Restoring the database to consistent state by undoing work is some times called 
backward recovery. Similarly restoring it to a consistent state by redoing work is some 
times called forward recovery. 

Finally when all such recovery activities are complete, then (and only then) the 
system is ready to accept new work. 

 
14.3.5 Media Recovery 

A media failure is a failure such as a disk head crash or a disk controller failure 

in which some portion of a database has been physically destroyed. A recovery from 
such a failure basically involves reloading (or restoring) the database from a backup 
copy (or dump) and then using the log; both active and achieve portions in general – to 

redo all transactions that completed since that backup copy was taken. There is no 
need to undo transactions that were still in progress at the time of the failure since by 
definition all updates of such transactions have been undone (actually lost) any way. 

The need to be able to perform media recovery implies the need for a 

dump/restore (or unload/reload) utility. The dump portion of that utility is used to 
make backup copies of the database on demand. (such copy can be kept on tape or 

other archival storage; it is not necessary that they be on direct access media ). After a 
media failure the restore portion of the utility is used to recreate the database from a 
specified backup copy. 

 

14.4 Summary 
The term integrity refers to the correctness or accuracy of data in database. Integrity 

constraints ensure that changes made to the database by authorized users do not result in a 
loss of data consistency. In general an integrity constraint can be an arbitrary predicate 
pertaining to the database. Domain constraints are the most elementary form of integrity 

constraint. Often, we wish to ensure that a value that appears in one relation for a given set 
of attributes also appears for a certain set of attributes in another relation. This condition is 
called referential integrity. Recovery in database system means, primarily, recovering the 
database itself: that is, restoring the database to a state that is known to be correct (or 

rather, consistent) after some failure has rendered the current state inconsistent. 
Transactions have four important properties- atomicity, consistency, isolation and durability. 

The system must be prepared to recover not only from purely local failures such as 
occurrence of and over flow condition with in an individual transaction but also from 

“Global” failures such as power outage. A media failure is a failure such as a disk head 
crash or a disk controller failure in which some portion of a database has been physically 
destroyed. 

 

14.5 Questionnaires: 
1. What do you understand by data integrity? Explain various types of 

integrity constraints along with suitable example. 

2. What do you understand by database recovery? Explain various types of 

recovery techniques. 

3. What do you understand by a transaction? Explain the ACID properties 

of transactions. 
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15.0 Introduction 
Database Security is a crucial issue in the database management system as it 

contain important information which is very valuable and sensitive for an organization’s 
database. Security in a database involves both policies and mechanisms to protect the data 
from unauthorized users to access and update. Authorization is a process of permitting 
users to perform certain operations on certain data objects in a shared database. 

Authorization is a process of granting a right or a privilege that enables user to have some 
rights to access a system or a system object. The various provisions that a database system 
may make for authorization may still not provide sufficient protection for highly sensitive 
data. In such cases data may be stored in encrypted form. It is not possible for encrypted 

data to be read unless the reader knows how to decipher (decrypt) them. Encryption also 
forms the basis of good schemes for authenticating users to a database. Authentication 
refers to the task of verifying the identity of a person/software connecting to a database. In 
the following sections we will study in details how database can be made secure. 

 
15.1 Objective 

After reading the lesson, we will be able to 

 Learn about the database security 

 Understand authorization 

 Understand Authentication 

 Understand various Encryption techniques 

 Understand various methods of implementing database security 
15.2 Database Security 

The data stored in the database need protection from unauthorized access and 
malicious destruction or alteration, in addition to the protection against accidental 

introduction of inconsistency that integrity constraints provide. In this section, we 
examine the ways in which data may be misused or intentionally made inconsistent. 
We then present mechanisms to guard against such occurrences. 

Security Violations among the forms of malicious access are : 

 Unauthorized reading of data (theft of information) 

 Unauthorized modification of data 

 Unauthorized destruction of data 
Database security refers to protection from malicious access. Absolute protection of 

the database from malicious abuse is not possible, but the cost to the perpetrator can 
be made high enough to deter most if not all attempts to access the database without 
proper authority. 



 

To protect the database, we must take security measures at several levels. 

 Database system. Some database users may be authorized to access only a 

limited portion of the database. Other users may be allowed to issue queries, 
but may be forbidden to modify the data. It is the responsibility of the database 
system to ensure that these authorization restrictions are not violated. 

 Operation system. No matter how secure the database system is, weakness in 
operating-system security may serve as a means of unauthorized access to the 
database. 

 Network. Since almost all database systems allow remote access through 
terminals or networks, software-level security within the network software is 

as important as physical security, both on the Internet and in private 
networks. 

 Physical. Sites with computer systems must be physically secured 

against armed or surreptitious entry by intruders. 

 Human. Users must be authorized carefully to reduce the chance of any 

user giving access to an intruder in exchange for a bride or other favors. 
Security at all these levels must be maintained if database security is to be ensured. 

A weakness at a low level of security (physical or human) allows circumvention of strict high- 

level (database) security measures. 
In the remainder of this section, we shall address security at the database- 

system level. Security at the physical and human levels, although important, is beyond 
the scope of this text. 

Security within the operating system is implemented at several levels, ranging 
from passwords for access to the system to the isolation of concurrent processes 
running within the system. The file system also provides some degree of protection. The 
bibliographical notes reference coverage of these topics in operating-system texts. 

Finally, network-level security has gained widespread recognition as the Internet has 
evolved from an academic research platform to the basis of international electronic 
commerce. The bibliographic notes list textbook coverage of the basic principles of 
network security. We shall present our discussion of security in terms of the relational- 

data model, although the concepts of this chapter are equally applicable to all data 
models. 

 

15.3 Authorization 
We may assign a user several forms of authorization on parts of the database. 

For example, 

 Read authorization allows reading, but not modification of data. 

 Insert authorization allows inserting of new data, but not modification 

of existing data. 

 Update authorization allows modification, but not deleting of data. 

 Delete authorization allows deleting of data. 

We may assign the user all, none or a combination of these types of 
authorization. 

In addition to these forms of authorization for access of data, we may grant a 
user authorization to modify the database schema. 

 Index authorization allows the creation and deleting of indices. 

 Resource authorization allows the creation of new relations. 

 Alteration authorization allows the addition or deleting of attributes in 

a relation. 



 

 Drop authorization allows the deletion of relations. 

The drop and delete authorization differ in that delete authorization allows 
deletion of tuples only. If a user deletes all tuples of a relation, the relation still exists, 

but it is empty. If a relation is dropped in to longer exists. 
We regulate the ability to create new relations through resource authorization. A 

user with resource authorization who creates a new relation is given all privileges on 
that relation automatically. 

Index authorization may appear unnecessary, since the creation or deleting of 
an index does not alter data in relations. Rather indices are a structure for 

performance enhancements. However, indices also consume space, and all database 
modifications are required to update indices. If index authorization were granted to all 
users, those who performed updates would be tempted to delete indices, whereas those 
who issued queries would be tempted to create numerous indices. To allow the 

database administrator to regulate the use of system resources, it is necessary to treat 
index creation as a privilege. 

The ultimate form of authority is that given to the database administrator. The 
database administrator may authorize new users, restructure the database, and so on. 

This form of authorization is analogous to that of a superuser or operator for an 
operating system.  

 
Authorization and Views 

Views are a means of providing a user with a personalized model of the 
database. A view can hide data that a user does not need to see. The ability of views to 

hide data serves both to simplify usage of the system and to enhance security. Views 
simplify system usage because they restrict the user's attention to the data of interest. 
Although a user may be denied direct access to a relation, that user may be allowed to 
access part of that relation through a view. Thus a combination of relational-level 

security and view-level security limits a user's access to precisely the data that the 
user needs. 

In our banking example consider a clerk who needs to know the names of all 
customers who have a loan at each branch. This is not authorized to see information 

regarding specific loans that the customer may have. Thus the clerk must be denied 
direct access to the loan relation. But, if she is to have access to the information 
needed, the clerk must be granted access to the view cust-loan, which consists of only 
the names of customers and the branches at which they have a loan. This view can be 

defines in SQL as follows: 

create view cust-loan as 
(select branch-name, customer-name 

from borrower, loan 
where borrower.loan-number = loan.loan-number) 

Suppose that the clerk issues the following SQL query: 

select * 
from cust-loan 

Clearly, the clerk is authorized to see the result of this query. However, when 
the query processor translates it into a query on the actual relations in the database, it 

produces a query on borrower and loan. Thus the system must check authorization on 
the clerk's query before it begins query processing. 

Creation of a view does not require resource authorization. A user who creates a 
view does not necessarily receive all privileges on that view. She receives only those 



 

privileges that provide no additional authorization beyond those that she already had. 

For example, a user cannot be given update authorization on a view without having 
update authorization on the relations used to define the view. If user creates a view on 
which no authorization can be granted, the system will deny the view creation request. 
In our cust-loan view example, the creator of the view must have read authorization on 

both borrower and loan relations. 
 
Granting of Privileges 

A user who has granted some form of authorization may be allowed to pass on 

this authorization to other users. However, we must be careful how authorization may 
be passed among users, to ensure that such authorization can be revoked at some 

future time. 

Consider as an example, the granting of update authorization on the loan relation of 
the bank database. Assume that initially  the database administrator  grants update 
authorization on loan to users U1, U2 and U3 who may in turn pass on this authorization to 
other users. The passing of authorization from one user to another can be represented by an 
authorization graph. The nodes of this graph are the users. The graph includes an edge Ui → 
Uj if user Ui grants update authorization on loan to Uj. The root of the graph is the database 
administrator. In the sample graph in Figure L, observe that user U5 is granted authorization 
by both U1 and U2; U4 is granted authorization by only U1. 

 

U1 U4 
 
 
 

DBA U2 U5 
 
 
 

U3 
 

Figure L: Authorization-grant chart 
A user has an authorization if and only if there is a path from the root of the 

authorization to that user. Suppose the DBA revokes the authorization of U1. Since U4 
has authorization from U1 that authorization should be revoked as well. However, U5 
was granted authorization by both U1 and U2. Since the database administrator did not 
revoke update authorization on loan from U2, U5 retains update authorization on loan. 
If U2 eventually revokes authorization from U5, then U5 loses the authorization. 

A pair of devious users might attempt to defeat the rules for revocation of 
authorization by granting authorization to each other, as shown in Figure M (a). If the 

database administrator revokes authorization from U2, U2 retains authorization 
through U3 as in Figure M (b). If authorization is revoked subsequently from U3, U3 
appears to retain authorization through U2, as in Figure M (c). However when the 
database administrator revokes authorization from U3, the edges from U3 to U2 and 
from U2 to U3 are no longer part of a path starting with the database administrator. 

 

 

 



 

 
 

Figure M: Attempt to defeat authorization revocation 

 
We require that all edges in an authorization graph be part of some path 

originating with the database administrator. The edges between U2 and U3 are deleted, 
and the resulting authorization graph is an in Figure below: 

 

DBA 

 
U1 U2 U3 

 
Authorization graph 

Notion of Roles 
Consider a bank where there are many tellers. Each teller must have the same 

types of authorization to the same set of relations. Whenever a new teller is appointed, 
she will have to be given all these authorizations individually. 

A better scheme would be to specify the authorization that every teller is to be 
given, and to separately identify which database users are tellers. The system can use 

these two pieces of information to determine the authorizations of each who is a teller. 
When a new person is hired as a teller, a user identifier must be allocated to him, and 
he must be identified as a teller. Individual permissions given to tellers need not be 
specified again. 

The notion of roles captures this scheme. A set of roles is created in the 
database. Authorization can be granted to roles, in exactly the same fashion as they 
are granted to individual users. Each database user is granted a set of roles (which 
may be empty) that he or she is authorized to perform. 

In our bank database examples of roles could include teller, branch-manager, 

auditor and system-administrator. 

A less preferable alternative would be to create a teller userid and permit each 



 

teller to connect to the database using the teller userid. The problem with this scheme 

is that it would not be possible to identity exactly which teller carried out a  
transaction, leading to security risks. The use of roles has the benefit of requiring  
users to connect to the database with their own userid. 

Any authorization that can be granted to a user can be granted to a role. Roles 

are granted to users just as authorizations are. And like other authorization a user 
may also be granted authorization to grant a particular role to others. Thus branch 
managers may be granted authorization to grant the teller role. 

Audit Trails 
Many secure database applications require an audit trail be maintained. An 

audit trail is a log of all changes (inserts/ deletes/ updates) to the database, along with 
information such as which user performed the changes and when the change was 
performed. 

The audit trails aids security in several ways. For instance if the balance on an 
account is found to be incorrect the bank may wish to trace all the updates performed 
on the account, to find out incorrect (or fraudulent) updates as well as the persons who 
carried out the updates. The bank could then also use the audit trail to trace all the 

tuples performed by these persons, in order to find other incorrect or fraudulent 
updates. 

It is possible to create an audit trail by defining appropriate triggers on relation 
updates (using system-defined variables that identify the user name and time). 

However, many database systems provide built in mechanisms to create audit trails, 
which are much more convenient to use. Details of how to create audit trails vary 
across database systems, and you should refer the database system manuals for 
details. 

Authorization in SQL 
The SQL language offers a fairly powerful mechanism for defining 

authorizations. We describe these mechanisms, as well as their limitations, in this 
section 

Privileges in SQL 
The SQL standard includes the privileges delete, insert, select and update. 

The select privilege corresponds to the read privilege. SQL also includes a references 
privilege that permits a user/role to declare foreign keys when creating relations. If the 
relation to be created includes a foreign key that references attributes of another 
relation, the user/role must have been granted references privilege on those 
attributes. The reason that the references privilege is a useful feature is somewhat 

subtle; we explain the reason later in this section. 
The SQL data-definition language includes commands to grant and revoke 

privileges. The grant statement is used to confer authorization. The basic form of this 
statement is: 

grant <privilege list> on < relation name or view name> to <user/role list> 

The privilege list allows the granting of several privileges in one command. 
The following grant statement grants users U1, U2 and U3 select authorization 

on the account relation. 
grant select on account to U1, U2, U3 

The update authorization may be given either on all attributes of the relation or 
on only some. If update authorization is included in a grant statement, the list of 



 

attributes on which update authorization is to be granted optionally appears in 

parentheses immediately after the update keyword. If the list of attributes is omitted, 
the update privileges will be granted on all attributes of the relation. 

This grant statement gives users U1, U2 and U3 update authorization on the 
amount attribute of the loan relation: 

grant update (amount) on loan to U1, U2, U3 
The insert privilege may also specify a list of attributes. Any inserts to the 

relation must specify only these attributes and the system either gives each of the 
remaining attributes default values (if a default is defined for the attribute) or sets 
them to null. 

The SQL references privilege is granted on specific attributes in a manner like 
that for the update privilege. The following grant statement allows user U1 to create 
relations that reference the key branch-name of the branch relation as a foreign key: 

grant references (branch-name) on branch to U1 
Initially it may appear that there is no reason ever to prevent users from 

creating foreign keys referencing another relation. However, foreign key constraints 
restrict deleting and update operations on the referenced relation. In the preceding 
example, if U1 creates a foreign key in a relation r referencing the branch-name 
attribute of the branch relation, and then inserts a tuple into r pertaining to the 
Perryridge branch, it is no longer possible to delete the Perryridge branch from the 
branch relation without also modifying relation r. Thus the definition of a foreign key 
by U1 restricts future activity by other users; therefore there is a need for the 
references privilege. 

 
The privilege all privileges can be used a short form for granting all the allowable 

privileges. Similarly the user name public refers to all current and future users of the system. 

SQL also includes a usage privilege that authorizes a user to use a specified domain (recall 
that a domain corresponds to the programming-language notion of a type, and may be user 
defined). 

 

Roles 
 

Roles can be created in SQL:1999 as follows 

create role teller 

Roles can then be granted privileges just as the users can, as illustrated in this 
statement:  

grant select on account 

to teller 



 

Roles can be assigned to the users, as well as some other roles, as there 

statements show 
grant teller to john 

create role manager 

grant teller to manager 

grant manager to mary 
Thus the privileges of a role consist of 

 All privileges directly granted to the user/role 

 All privileges granted to roles that have been granted to the user/role 
Note that there can be a chain of roles; for example the role employee may be granted 

to all tellers. In turn the role teller is granted to all managers. Thus the manager role inherits 
all privileges granted to the roles employee and to teller in addition to privileges granted 
directly to manager. 

 
The Privilege to Grant Privileges 

By default, a user/role that is granted a privilege is not authorized to grant that 
privilege to another user/role. If we wish to grant a privilege and to allow the recipient 
to pass the privilege on to other users, we append the with grant option clause to the 
appropriate grant command. For example, if we wish to allow U1 the select privilege on 

branch and allow U1 to grant this privilege to others, we write 
grant select on branch to U1 with grant option 

To revoke an authorization we use the revoke statement. It takes a form almost 
identical to that of grant: 

revoke <privilege list> on < relation name or view name> 
from <user/role list> [restrict | cascade] 

Thus, to revoke the privileges that we granted previously, we write 
revoke select on branch from U1, U2, U3 
revoke update (amount) on loan from U1, U2, U3 
revoke references (branch-name) on branch from U1 

The revocation of a privilege from user/role may cause other users/role also to lose 

that privilege. This behavior is called cascading of the revoke. In most database system, 
cascading is the default behavior; the keyword cascade can thus be omitted, as we have 
done in the preceding examples. The revoke statement may alternatively specify restrict: 
revoke select on branch from U1, U2, U3 restrict 

In this case the system returns an error if there are any cascading revokes, and does 

not carry out the revoke action. The following revoke statement revokes only the grant option 
rather than the actual select privilege: 

revoke grant option for select on branch from U1 
Other Features 

The creator of an object (relation/view/role) gets all privileges on the object, 
including the privilege to grant privileges to others. 

The SQL standard specifies a primitive authorization mechanism for the 
database schema: Only the owner of the schema can carry out any modification to the 
schema. Thus, schema modifications such as creating or deleting relations adding or 
dropping attributes or relations and adding or dropping indices—may be executed by 

only the owner of the schema. Several database implementations have more powerful 
authorization mechanisms for database schemas similar to those discussed earlier but 
these mechanisms are nonstandard. 



 

 
Limitations of SQL Authorization 

The current SQL standards for authorization have some shortcomings. For 
instance, suppose you want all students to be able to see their own grades, but not the 

grades of anyone else. Authorization must then be at the level of individual tuples, 
which is not possible in the SQL standard for authorization. 

Furthermore with the growth in the Web, database accesses come primarily 
from Web application server. The end users may not have individual user identifiers on 

the database as indeed there may only be a single user identifier in the database 
corresponding to all users of an application server. 

The task of authorization then falls on the application server; the entire 
authorization scheme of SQL is bypassed. The benefit is that fine-grained 

authorizations such as those to individual tuples can be implemented by the 
application. The problems are these: 

 The code for checking authorization becomes intermixed with the rest of 

the application code. 

 Implementing authorization through application code, rather than specifying 

it declaratively in SQL, makes it hard to ensure the absence of loopholes. 
Because of an oversight, one of the application programs may not heck for 
authorization, allowing unauthorized users access to confidential data. 

Verifying that all application programs make all required authorization 
checks involves reading through all the application server code a formidable 
task in a larger system. 

15.4 Encryption and Authentication 
The various provisions that a database system may make for authorization may 

still not provide sufficient protection for highly sensitive data. In such cases data may 
be stored in encrypted form. It is not possible for encryption data to be read unless the 

reader knows how to decipher (decrypt) them. Encryption also forms the basis of good 
schemes for authenticating users to a database. 

Encryption Techniques 
There are a vast number of techniques for the encryption of data. Simple 

encryption techniques may not provide adequate security, since it may be easy for an 
unauthorized user to break the code. As an example of a weak encryption technique, 
consider the substitution of each character with the next character in the alphabet. 

Thus, 

 
becomes 

Perryridge 

 
Qfsszsjehf 



 

If an unauthorized user sees on “Qfsszsjehf” she probably has insufficient 

information to break the code. However, if the intruder sees a large number of 
encrypted branch names, she could use statistical data regarding the relative 

frequency of characters to guess what substitution is being made (for example, E is the 
most common letter in English text, followed by T, A, O, N, I and so on). 

A good encryption technique has the following properties 

 It is relatively simple for authorized users to encrypt and decrypt data 

 It depends not on the secrecy of the algorithm, but rather on a parameter 
of the algorithm called the encryption key. 

 Its encryption key is extremely difficult for an intruder to determine. 

One approach the Data Encryption Standard (DES), issued in 1977 does both a 

substitution of characters and a rearrangement of their order on the basis of an encryption 
key. For this scheme to work the authorized users must be provided with the encryption 
key via a secure mechanism. This requirement is a major weakness since the scheme is no 
more than the security of the mechanism by which the encryption key is transmitted. The 

DES standard was reaffirmed in 1983, 1987 and again in 1993. However weakness in  
DES was recognized in 1993 as reaching a point where a new standard to be called the 
Advanced Encryption Standard (AES), needed to be selected. In 2000, the Rijndael 
algorithm (named for the inventors V. Tijmen and J. Daemen) was selected to be the AES. 

The Rijndael algorithm was chosen for its significantly stronger level of security and its 
relative ease of implementation on current computer systems as well as such devices as 
smart cards. Like the DES standard, the Rijndael algorithm is a shared key (or symmetric 
key) algorithm in which the authorized users share a key.  

 

Public-key encryption is an alterative scheme that avoids some of the problems that 

we face with the DES. It is based on two keys; a public key and a private key. Each 

user Ui has a public key Ei and a private Key Di. All public keys are published. They 

can be seen by anyone. Each private key is known to only the one user to whom the 

key belongs. If user U1 wants to store encrypted data, U1 encrypts them using public 

key E1. Decryption requires the private key D1. 
Because the encryption key for each user is public, it is possible to exchange 

information securely by this scheme. If user U1 wants to share data with U2, U1 encrypts the 
data using E2 the public key of U2. Since only user U2 know how to decrypt the data, 
information is transferred securely. 

For public key encryption to work there must be a scheme for encryption that 
can be made public without making it easy for people to figure out the scheme for 
decryption. In other words it must be hard to deduce the private key given the public 

key. Such a scheme does not exist and is based on these conditions: 

 There is an efficient algorithm for testing whether or not a number is 
prime. 

 No efficient algorithm is known for finding the prime factors of a number. 
For purposes of this scheme data are treated as a collection of integers. We create a 

public key by computing the product of two large prime numbers: P1 and P2. The private key 
consists of the pair (P1, P2). The decryption algorithm cannot be used successfully if only the 
product P1P2 is known it needs the individual values P1 and P2. Since all that is published is 
the product P1P2, an unauthorized user would need to be able to factor P1P2 to steal data. By 
choosing P1 and P2 to be sufficiently large (over 100 digits) we can make the cost of factoring 
P1P2 prohibitively high (on the order of years of computation time on even the fastest 



 

computers). 

The details of Public-key encryption by this scheme is secure, it is also 
computationally expensive. A hybrid scheme used for secure communication is as 

follows: DES keys are exchanged via a public-key-encryption scheme and DES 
encryption is used on the data transmitted subsequently. 

 
Authentication 

Authentication refers to the task of verifying the identity of a person/software 

connecting to a database. The simplest form of authentication consists of a secret 
password which must be presented when a connection is opened to a database. 

Password based authentication is used widely by operating systems an well as 
databases. However the use of passwords has some drawbacks especially over a network. If 

an eavesdropper is able to "sniff" the data being sent over the networks, she may be able to 
find the password as it is being sent across the networks. Once the eavesdropper has a user 
and password, she can connect to the database pretending to be the legitimate user. 

A more secure scheme involves a challenge-response system. The database 

system sends a challenge string to the user. The user encrypts the challenge string 
using a secret password as encryption key and then returns the result. The database 
system can verify the authenticity of the user by decrypting the string with the same 

secret password and checking the result with the original challenge string.  This 
scheme ensures that no passwords travel cross the network. 

Public key systems can be used for encryption in challenge-response systems. 

The database encrypts a challenge string using the user's public key and sends it to 
the user. The user decrypts the string using her private key, and returns the result to 
the database system. The database system then checks the response. This scheme has 

the added benefit of not storing the secret password in the database where it could 
potentially be seen by system administrators. 

Another interesting application of public-key encryption is in digital signature. 
To verify authenticity of data, digital signatures play the electronic role of physical 

signatures on documents. The private key is used to sign data and the signed data can 
be made public. Anyone can verify them by the public key but no one could have 
generated the signed data without having the private key. Thus we can authenticate 
the data; that is we can verify that the data were indeed created by the person who 

claims to have created them. 
Furthermore digital signatures also serve to ensure non-repudiation. That is in 

case the person who created the data later claims she did not create it (the electronic 
equivalent of claiming not to have signed the check) we can prove that, that person 

must have created the data (unless her private key was leaked to others). 
 

15.5 Summary 
Database security refers to protection from malicious access. For making 

database secure, we may assign a user several forms of authorization on parts of the 
database. For example, Read authorization allows reading, but not modification, of 
data. Insert authorization allows inserting of new data, but not modification of 
existing data. Update authorization allows modification, but not deleting, of data. 

Delete authorization allows deleting of data. In addition to these forms of 
authorization for access of data, we may grant a user authorization to modify the 



 

database schema - Index authorization, Resource authorization, Alteration 

authorization, Drop authorization. Many secure database applications require an audit 
trail be maintained. An audit trail is a log of all changes (inserts/ deletes/ updates) to 
the database, along with information such as which user performed the changes and 
when the change was performed. The various provisions that a database system may 

make for authorization may still not provide sufficient protection for highly sensitive 
data. In such cases data may be stored in encrypted form. It is not possible for 
encryption data to be read unless the reader knows how to decipher (decrypt) them. 
Encryption also forms the basis of good schemes for authenticating users to a 

database. Authentication refers to the task of verifying the identity of a 
person/software connecting to a database. The simplest form of authentication 
consists of a secret password which must be presented when a connection is opened to 
a database. 

 
15.6 Questionnaires: 

1. What to you understand by Database security? 
2. What are the various ways in which database can be made secure? 
3. What you mean by Encryption? Explain various data encryption 

techniques. 

4. What do you mean by Authentication? 
5. What do you mean by authorization? 
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16.1 Introduction  

• SQL stands for Structured Query Language 

• SQL lets you access and manipulate databases 

• SQL is an ANSI (American National Standards Institute) standard 

SQL is a declarative (non-procedural)language. SQL is (usually) not case-sensitive, but we’ll 

write SQL keywords in upper case for emphasis. 

Some database systems require a semicolon at the end of each SQL statement. 
 

A table is database object that holds user data. Each column of the table will have specified 

data type bound to it. Oracle ensures that only data, which is identical to the datatype of 

the column, will be stored within the column. 

16.2  SQL DML and DDL 

SQL can be divided into two parts: 

The Data Definition Language (DDL) and the Data Manipulation Language (DML). 
 

Data Definition Language (DDL) 

It is a set of SQL commands used to create, modify and delete database structure but not 

data. It also define indexes (keys), specify links between tables, and impose constraints 

between tables. DDL commands are auto COMMIT. 

The most important DDL statements in SQL are: 



 

 

• CREATE TABLE - creates a new

• ALTER TABLE - modifies a

   TRUNCATE TABLE- deletes all records from

DROP TABLE - deletes a table

 

Data Manipulation Language 

It is the area of SQL that allows changing 

commands form the DML part of SQL:

• INSERT - inserts new data into a

• SELECT - extracts data from a

• UPDATE - updates data in a

• DELETE - deletes data from a
 

Data Control Language (DCL)

It is the component of SQL statement that control access to data and to the 
database. Occasionally DCL statements are grouped with DML Statements.

   COMMIT –Save work done.

   SAVEPOINT – Identify a point 

ROLLBACK – Restore database to original since the last

   GRANT – gives user’s access privileges to

REVOKE – withdraw access privileges given with GRANT command.

creates a new table 

modifies a table 

deletes all records from a table   

deletes a table 

Data Manipulation Language (DML) 

It is the area of SQL that allows changing data within the database. The query and update 

commands form the DML part of SQL: 

inserts new data into a database 

extracts data from a database 

updates data in a database 

deletes data from a database 

(DCL) 

It is the component of SQL statement that control access to data and to the 
database. Occasionally DCL statements are grouped with DML Statements.

done. 

Identify a point in a transaction to which you can

Restore database to original since the last COMMIT. 

gives user’s access privileges to database. 

withdraw access privileges given with GRANT command.

data within the database. The query and update 

It is the component of SQL statement that control access to data and to the 
database. Occasionally DCL statements are grouped with DML Statements. 

which you can later rollback.   

 

withdraw access privileges given with GRANT command. 



 

 

 
 

16.3 Basic Data Types 
 

Data Type Description 

 
 

CHAR(size) 

This data type is used to store character strings values of fixed 

length. The size in brackets determines the number of characters 

the cell can hold. The maximum number of character(ie the size) 

this data type can hold is 255 characters. The data held is right 

padded with spaces to 

whatever length specified. 
 
 
VARCHAR(size) 

/ VARCHAR2(size) 

This data type is used to store variable length alphanumeric data. 

It is more flexible form of CHAR data type. VARCHAR can hold 1 

to 255 characters. VARCHAR is usually a wiser choice than 

CHAR, due to its variable length format characteristic. But, keep 

in mind, that CHAR is much faster than VARCHAR, sometimes 

up to 50%. 

 
 

DATE 

This data type is used to represent data and time. The standard 

format is DD-MMM-YY. Date Time stores date in the 24-hour 

format. By default, the time in a date field is 12:00:00am. 

 
 

NUMBER(P,S) 

The NUMBER data type is used to store numbers(fixed or 

floating point). Number of virtually any magnitude maybe 

stored up to 38 digits of precision. 

The Precision(P), determines the maximum length of the data, 

whereas the scale(S), determine the number of places to the right 

of the decimal. 

Example: Number(5,2) is a number that has 3 digits before the 

decimal and 2 digits after the decimal. 
 
 

LONG 

This data type is used to store variable length character strings 

containing up to 2GB. LONG data can be used to store arrays of 

binary data in ASCII format. Only one LONG value can be defined 

per table. 
RAW / 
LONG RAW 

The RAW / LONG RAW data types are used to store binary data, 

such as digitized picture or image. RAW data type can have 

maximum 

length of 255 bytes. LONG RAW data type can contain up to 2GB. 



 

 

16.4 SQL Commands 

The Create Table command 

The CREATE TABLE command defines each column of the table uniquely. Each column 

has a minimum of three attributes, name, datatype and size(i.e column width).each table 

column definition is a single clause in the create table syntax. Each table column definition 

is separated from the other by a comma. Finally, the SQL statement is terminated with a 

semi colon. 

Rules for Creating Tables 

 A name can have maximum upto 30 characters. 

 Alphabets from A-Z, a-z and numbers from 0-9 are allowed. 

 A name should begin with an alphabet. 

 The use of the special character like _(underscore) is allowed. 

 SQL reserved words not allowed. For example: create, select, alter. 
 

Syntax: 

CREATE TABLE <tablename> 

(<columnName1> <Datatype>(<size>), 

<columnName2> <Datatype>(<size>), ……. ); 
 
 

Example: 

CREATE TABLE gktab 

(Regno NUMBER(3), Name 

VARCHAR(20), 

Gender CHAR, 

Dob DATE, 

Course CHAR(5)); 



 

 

Inserting Data into Tables 

Once a table is created, the most natural thing to do is load this table with data to be 
manipulated later. 

 
 

When inserting a single row of data into the table, the insert operation: 

 Creates a new row(empty) in the database table. 
 Loads the values passed(by the SQL insert) into the columns specified. 

Syntax: 

INSERT INTO <tablename>(<columnname1>, <columnname2>, ..) 

Values(<expression1>,<expression2>…); 

 
Example: 

INSERT INTO gktab(regno,name,gender,dob,course) VALUES(101,’Varsh G 

Kalyan’,’F’,’20-Sep-1985’,’BCA’); 

 
Or you can use the below method to insert the data into table. 

 

INSERT INTO gktab VALUES(102,’Mohith G Kalyan’,’M’,’20-Aug-1980’,’BBM’); INSERT INTO 

gktab VALUES(106,’Nisarga’,’F’,’15-Jul-1983’,’BCom’); 

INSERT INTO gktab VALUES(105,’Eenchara’,’F’,’04-Dec-1985’,’BCA’); INSERT 

INTO gktab VALUES(103,’Ravi K’,’M’,’29-Mar-1989’,’BCom’); INSERT INTO 

gktab VALUES(104,’Roopa’,’F’,’17-Jan-1984’,’BBM’); 

 
Whenever you work on the data which has data types like CHAR,VARCHAR/VARCHAR2, 

DATE should be used between single quote(‘) 

 

Viewing Data in the Tables 

Once data has been inserted into a table, the next most logical operation would be to view 

what has been inserted. The SELECT SQL verb is used to achieve this. The SELECT 

command is used to retrieve rows selected from one or more tables. 

 
All Rows and All Columns 

 
SELECT * FROM <tablename> 

SELECT * FROM gktab; 



 

 

It shows all rows and column data in the table 

 

Filtering Table Data 
 

While viewing data from a table it is rare that all the data from the table will be required 

each time. Hence, SQL provides a method of filtering table data that is not required. 

The ways of filtering table data are: 

 Selected columns and all rows 

 Selected rows and all columns 
 Selected columns and selected rows 

Selected Columns and All Rows 
 

The retrieval of specific columns from a table can be done as shown below. Syntax 

SELECT <columnname1>, <Columnname2> FROM <tablename> 
 

Example 

Show only Regno, Name and Course from gktab. 

SELECT Regno, Name, Course FROM gktab; 

 
 
 



 

 

Selected Rows and All Columns 
 

The WHERE clause is used to extract only those records that fulfill a specified 

criterion. 

When a WHERE clause is added to the SQL query, the Oracle engine compares each record 

in the table with condition specified in the WHERE clause. The Oracle engine displays only 

those records that satisfy the specified condition. 

 

Syntax 

SELECT * FROM <tablename> WHERE <condition>; 
 

Here, <condition> is always quantified as <columnname=value> 
 

When specifying a condition in the WHERE clause all standard operators such as logical, 

arithmetic and so on, can be used. 

Example-1: 



 

 

 
Display all the students from BCA. 

SELECT * FROM gktab WHERE Course=’BCA’; 
 

 
 
 

Example-2: 

Display the student whose regno is 102. SELECT 

* FROM gktab WHERE Regno=102; 

 
 
 

Selected Columns and Selected Rows 
 

To view a specific set of rows and columns from a table 

When a WHERE clause is added to the SQL query, the Oracle engine compares each record 
in the table with condition specified in the WHERE clause. The Oracle engine displays only 
those records that satisfy the specified condition. 

Syntax 

SELECT <columnname1>, <Columnname2> FROM <tablename> WHERE 

<condition>; 

 

Example-1: 

List the student’s Regno, Name for the Course BCA. SELECT 

Regno, Name FROM gktab WHERE Course=’BCA’; 

 

Example-2: 



 

 

List the student’s Regno, Name, Gender for the Course BBM. SELECT 

Regno, Name, Gender FROM gktab WHERE Course=’BBM’; 

 
 

Eliminating Duplicate Rows when using a SELECT statement 

A table could hold duplicate rows. In such a case, to view only unique rows the 

DISTINCT clause can be used. 
 

The DISTINCT clause allows removing duplicates from the result set. The 

DISTINCT clause can only be used with SELECT statements. 
 

The DISTINCT clause scans through the values of the column/s specified and displays only 

unique values from amongst them. 

 
Syntax 

SELECT DISTINCT <columnname1>, <Columnname2> FROM 

<Tablename>; 

 

Example: 

Show different courses from gktab 

SELECT DISTINCT Course from gktab; 

 

Sorting Data in a Table 

Oracle allows data from a table to be viewed in a sorted order. The rows retrieved from the 

table will be sorted in either ascending or descending order depending on the condition 

specified in the SELECT sentence. 

 



 

 

Syntax 

SELECT * FROM <tablename> 
 

ORDER BY <Columnname1>,<Columnname2> <[Sort Order]>; 
 
 

The ORDER BY clause sorts the result set based on the column specified. The 

ORDER BY clause can only be used in SELECT statements. The 

Oracle engine sorts in ascending order by default 

 

Example-1: 

Show details of students according to Regno. SELECT * 

FROM gktab ORDER BY Regno; 

 
 

Example-2: 

Show the details of students names in descending order. 

SELECT * FROM gktab ORDER BY Name DESC; 

 

DELETE Operations 

The DELETE command deletes rows from the table that satisfies the condition 
provided by its WHERE clause, and returns the number of records deleted. 



 

 

The verb DELETE in SQL is used to remove either 

 Specific row(s) from a table 
OR 

 All the rows from a table 
 

Removal of Specific Row(s) 
 

Syntax: 
 

DELETE FROM tablename WHERE Condition; 
 

Example: 

DELETE FROM gktab WHERE Regno=103; 1 

rows deleted 

SELECT * FROM gktab; 

 

In the above table, the Regno 103 is deleted from the table 
 
 

Remove of ALL Rows 
 

Syntax 
 

DELETE FROM tablename; 

Example 

DELETE FROM gktab; 

6 rows deleted 

SELECT * FROM gktab; 

no rows selected 

Once the table is deleted, use Rollback to undo the above operations. 
 
 



 

 

UPDATING THE CONTENTS OF A TABLE 

The UPDATE Command is used to change or modify data values in a table. The verb 

update in SQL is used to either updates: 

 ALL the rows from a table. 
OR 

 A select set of rows from a table. 
 
 

Updating all rows 
 

The UPDATE statement updates columns in the existing table’s rows with a new values. 

The SET clause indicates which column data should be modified and the new values that 

they should hold. The WHERE clause, if given, specifies which rows should be updated. 

Otherwise, all table rows are updated. 

 
Syntax: 

UPDATE tablename 

SET columnname1=expression1, columnname2=expression2; 
 
 

Example: update the gktab table by changing its course to BCA. 

UPDATE gktab SET course=’BCA’; 

6 rows updated 

SELECT * FROM gktab; 
 

 
 

In the above table, the course is changed to BCA for all the rows in the table. 

Updating Records Conditionally 
 

If you want to update a specific set of rows in table, then WHERE clause is used. 

 



 

 

Syntax: 
 

UPDATE tablename 
 

SET Columnname1=Expression1, Columnname2=Expression2 

WHERE Condition; 

Example: 
 

Update gktab table by changing the course BCA to BBM for Regno 102. 

UPDATE gktab SET Course=’BBM’ WHERE Regno=102; 

1 rows updated 

SELECT * FROM gktab; 

 
 
MODIFYING THE STRUCTURE OF TABLES 

The structure of a table can be modified by using the ALTER TABLE command. 

ALTER TABLE allows changing the structure of an existing table. With ALTER TABLE 

if is possible to add or delete columns, create or destroy indexes, change the data 

type of existing columns, or rename columns or the table itself. 

ALTER TABLE works by making a temporary copy of the original table. The alteration is 

performed on the copy, then the original table is deleted and the new one is renamed. While 

ALTER TABLE is executing, the original table is still readable by the users of ORACLE. 

 

Restrictions on the ALTER TABLE 

The following task cannot be performed when using the ALTER TABLE Clause: 

 Change the name of the table. 

 Change the name of the Column. 

 Decrease the size of a column if table data exists. 
 



 

 

ALTER TABLE Command can perform 

 Adding New Columns. 

 Dropping A Column from a Table. 

 Modifying Existing Columns. 
 
 
Adding New Columns 

Syntax: 

ALTER TABLE tablename 

ADD(NewColumnname1 Datatype(size), 

NewColumnname2 Datatype(size)…..); 
 
 

Example: Enter a new filed Phno to gktab. 

ALTER TABLE gktab ADD(Phno number(10)); The 

table is altered with new column Phno 

Select * from gktab; 

 

You can also use DESC gktab, to see the new column added to table. 
 

Dropping A Column from a Table. 
 

Syntax: 

ALTER TABLE tablename DROP COLUMN Columnname; 
 
 

Example: Drop the column Phno from gktab. 

ALTER TABLE gktab DROP COLUMN Phno; 
 



 

 

The table is altered, the column Phno is removed from the table. 
 

Select * from gktab; 

 

You can also use DESC gktab, to see the column removed from the table. 

 

Modifying Existing Columns. 

Syntax: 

ALTER TABLE tablename 

MODIFY(Columnname Newdatatype(Newsize)); 

Example: 

ALTER TABLE gktab MODIFY(Name VARCHAR(25)); 

The table altered with new size value 25. 
 

DESC gktab; 
 

RENAMING TABLES 

Oracle allows renaming of tables. The rename operation is done atomically, which means that 

no other thread can access any of the tables while the rename process is running. 

Syntax 

RENAME tablename TO newtablename; 
 
 

TRUNCATING TABLES 

TRUNCATE command deletes the rows in the table permanently. 

Syntax: 

TRUNCATE TABLE tablename; 

The number of deleted rows are not returned. Truncate operations drop and re- create 



 

 

the table, which is much faster than deleting rows one by one. 

Example: 

TRUNCATE TABLE gktab; 

Table truncated i.e., all the rows are deleted permanently. 
 

DESTROYING TABLES 

Sometimes tables within a particular database become obsolete and need to be 

discarded. In such situation using the DROP TABLE statement with table name can 

destroy a specific table. 

Syntax: 

DROP TABLE tablename; 

Example: 

DROP TABLE gktab; 

If a table is dropped all the records held within and the structure of the table is lost and 

cannot be recovered. 

 
COMMIT and ROLLBACK 

Commit 

Commit command is used to permanently save any transaction into database. 

SQL> commit; 

Rollback 

Rollback is used to undo the changes made by any command but only before a commit is 

done. We can't Rollback data which has been committed in the database with the help of the 

commit keyword or DDL Commands, because DDL commands are auto commit commands. 

SQL> Rollback; 

 

Difference between DELETE and DROP. 

The DELETE command is used to remove rows from a table. After performing a DELETE 

operation you need to COMMIT or ROLLBACK the transaction to make the change permanent or 

to undo it. 

 
The DROP command removes a table from the database. All the tables' rows, indexes and 

privileges will also be removed. The operation cannot be rolled back. 

 
 



 

 

Difference between DELETE and TRUNCATE. 

The DELETE command is used to remove rows from a table. After performing a DELETE 

operation you need to COMMIT or ROLLBACK the transaction to make the change permanent or 

to undo it. 

 
TRUNCATE removes all rows from a table. The operation cannot be rolled back. 

Difference between CHAR and VARCHAR. CHAR 
 

1. Used to store fixed length data. 
2. The maximum characters the data type can hold is 255 characters. 
3. It's 50% faster than VARCHAR. 
4. Uses static memory allocation. 

VARCHAR 
 

1. Used to store variable length data. 
2. The maximum characters the data type can hold is up to 4000 characters. 
3. It's slower than CHAR. 
4. Uses dynamic memory allocation. 

 

16.5 DATA CONSTRINTS 

Oracle permits data constraints to be attached to table column via SQL syntax that checks 

data for integrity prior storage. Once data constraints are part of a table column construct, 

the oracle database engine checks the data being entered into a table column against the 

data constraints. If the data passes this check, it is stored in the table column, else the data 

is rejected. Even if a single column of the record being entered into the table fails a 

constraint, the entire record is rejected and not stored in the table. 

 
Both CREATE TABLE and ALTER TABLE SQL verbs can be used to write SQL 

sentences that attach constraints to a table column. 

The constraints are a keyword. The constraint is rules that restrict the values for one or 

more columns in a table. The Oracle Server uses constraints to prevent invalid data entry 

into tables. The constraints store the validate data and without constraints we can just store 

invalid data. The constraints are an important part of the table. 

 



 

 

 

 

Primary Key Constraint 

A primary key can consist of one or more columns on a table. Primary key constraints define 

a column or series of columns that uniquely identify a given row in a table. Defining a 

primary key on a table is optional and you can only define a single primary key on a table. A 

primary key constraint can consist of one or many columns (up to 32). When multiple 

columns are used as a primary key, they are called a composite key. Any column that is 

defined as a primary key column is automatically set with a NOT NULL status. The Primary 

key constraint can be applied at column level and table level. 

 
Foreign Key Constraint 

A foreign key constraint is used to enforce a relationship between two tables. A foreign key is 

a column (or a group of columns) whose values are derived from the Primary key or unique 

key of some other table. 

The table in which the foreign key is defined is called a Foreign table or Detail table. The 

table that defines primary key or unique key and is referenced by the foreign key is called 

Primary table or Master table. 

The master table can be referenced in the foreign key definition by using the clause 

REFERENCES Tablename.ColumnName when defining the foreign key, column attributes, 

in the detail table. The foreign key constraint can be applied at column level and table level. 

 
Unique Key Constraint 

Unique key will not allow duplicate values. A table can have more than one Unique key. A 



 

 

unique constraint defines a column, or series of columns, that must be unique in value. The 

UNIQUE constraint can be applied at column level and table level. 

CHECK Constraint 

Business Rule validation can be applied to a table column by using CHECk 
constraint. CHECK constraints must be specified as a logical expression that 
evaluates either to TRUE or FALSE. 

The CHECK constraint ensures that all values in a column satisfy certain conditions. Once 

defined, the database will only insert a new row or update an existing row if the new value 

satisfies the CHECK constraint. The CHECK constraint is used to ensure data quality. 

A CHECK constraint takes substantially longer to execute as compared to NOT NULL, 
PRIMARY KEY, FOREIGN KEY or UNIQUE. The CHECK constraint can be applied at column 
level and table level. 

NOT NULL Constraint 

The NOT NULL column constraint ensures that a table column cannot be left empty. 

When a column is defined as not null, then that column becomes a mandatory column. The 
NOT NULL constraint can only be applied at column level. 

Example on Constraints 

Consider the Table shown below 
 

 



 

 

16.6 Arithmetic Operators 

Oracle allows arithmetic operators to be used while viewing records from a table or while 
performing data manipulation operations such as insert, updated and delete. These are: 

+ Addition 

- Subtraction 

/ Division 

* Multiplication 

() Enclosed Operations 
 
 
 

Consider the below employee table(gkemp) 
 
 
 



 

 

 

 

 



 

 

16.7 Logical Operators 

Logical operators that can be used in SQL sentence are: 
 

AND Operators 

OR Operators 

NOT Operators 

 

Operators Description 
OR :-For the row to be selected at least one of the conditions must be true. 

AND :-For a row to be selected all the specified conditions must be true. 

NOT :-For a row to be selected the specified condition must be false. 

 

Consider the below employee table(gkemp) 
 

 
 
 

For example: if you want to find the names of employees who are working either in 
Commerce or Arts department, the query would be like, 

 

 
 
 

For example: To find the names of the employee whose salary between10000 to 20000, the 
query would be like, 

 



 

 

 
 
 

For example: If you want to find out the names of the employee who do not belong to 
computer science department, the query would be like, 

 
 
16.8 Range Searching (BETWEEN) 

In order to select the data that is within a range of values, the BETWEEN operator is used. 

The BETWEEN operator allows the selection of rows that contain values within a specified 

lower and upper limit. The range coded after the word BETWEEN is inclusive. 

The lower value must be coded first. The two values in between the range must be linked 

with the keyword AND. The BETWEEN operator can be used with both character and 

numeric data types. However, the data types cannot be mixed. 

 
For example: Find the names of the employee whose salary between10000 and 20000, the 
query would be like, 

 



 

 

 
 

16.9 Pattern Matching (LIKE, IN, NOT IN)  

The LIKE predicate allows comparison of one string value with another string value, 
which is not identical. this is achieved by using wild characters. Two wild characters that 
are available are: 

For character data types: 

% allows to match any string of any length (including zero length). 

_ allows to match on a single character. 
 
 



 

 

IN 

The IN operator is used when you want to compare a column with more than one value. It is 
similar to an OR condition. 

For example: If you want to find the names of company located in the city 
Bangalore, Mumbai, Gurgaon, the query would be like, 

 

 
 

NOT IN 

The NOT IN operator is opposite to IN. 

For example: If you want to find the names of company located in the other city of 
Bangalore, Mumbai, Gurgaon, the query would be like, 

 



 

 

16.10 SQL String Functions 
 

SQL string functions are used primarily for string manipulation. The following table details the 

important string functions: 

 
 

SQL Command Meaning 
|| It used for concatenation. 

INITCAP Return a string with first letter of each word in upper case. 

LENGTH Return the length of a word. 

LOWER Returns character, with all letters forced to lowercase. 

UPPER Returns character, with all letters forced to uppercase. 

LPAD Returns character, left-padded to length n with sequence of 
character specified. 

RPAD Returns character, right-padded to length n with sequence of 
character specified. 

LTRIM Removes characters from the left of char with initial characters 
removed upto the first character not in set. 

RTRIM Returns characters, with final characters removed after the last 
character not in the set. 

SUBSTR Returns a portion of characters, beginning at character m, and going 
upto character n. if n is omitted, it returns upto the last 
character in the string. The first position of char is 1. 

INSTR Returns the location of substring in a string. 



 

 

 
 
 

 
 

 



 

 

 
 
 

 

 
 

16.11 Summary 

SQL stands for "Structured Query Language" and is a language to communicate with 
relational and object oriented databases. With SQL new tables (relations, schemes) can be 
created, altered, and deleted using the commands 
TABLE. This part of SQL is also known as the Data Definition Language (DDL). More 
important in the daily use of SQL are the data query and manipulation (DML) commands. 
These commands allow you to 
also used to control access restrictions to the database or to parts of it. 

 
 

 

SQL stands for "Structured Query Language" and is a language to communicate with 
relational and object oriented databases. With SQL new tables (relations, schemes) can be 
created, altered, and deleted using the commands CREATE TABLE, 

. This part of SQL is also known as the Data Definition Language (DDL). More 
important in the daily use of SQL are the data query and manipulation (DML) commands. 
These commands allow you to INSERT, DELETE, and UPDATE values in the database. SQL is 

used to control access restrictions to the database or to parts of it. 

 

SQL stands for "Structured Query Language" and is a language to communicate with 
relational and object oriented databases. With SQL new tables (relations, schemes) can be 

, ALTERTABLEand DROP 
. This part of SQL is also known as the Data Definition Language (DDL). More 

important in the daily use of SQL are the data query and manipulation (DML) commands. 
values in the database. SQL is 

used to control access restrictions to the database or to parts of it.  
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